Product Citations: 30

Powered by

Silibinin Mitigates Vanadium-induced Lung Injury via the TLR4/MAPK/NF-κB Pathway in Mice.

In In Vivo (Athens, Greece) on 27 August 2024 by Im, H., Kim, E., et al.

Silibinin, has been investigated for its potential benefits and mechanisms in addressing vanadium pentoxide (V2O5)-induced pulmonary inflammation. This study explored the anti-inflammatory activity of silibinin and elucidate the mechanisms by which it operates in a mouse model of vanadium-induced lung injury.
Eight-week-old male BALB/c mice were exposed to V2O5 to induce lung injury. Mice were pretreated with silibinin at doses of 50 mg/kg and 100 mg/kg. Histological analyses were performed to assess cell viability and infiltration of inflammatory cells. The expression of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) and activation of the MAPK and NF-[Formula: see text]B signaling pathways, as well as the NLRP3 inflammasome, were evaluated using real-time PCR, western blot analysis, and immunohistochemistry. Whole blood analysis was conducted to measure white blood cell counts.
Silibinin treatment significantly improved cell viability, reduced inflammatory cell infiltration, and decreased the expression of pro-inflammatory cytokines in V2O5-induced lung injury. It also notably suppressed the activation of the MAPK and NF-[Formula: see text]B signaling pathways, along with a marked reduction in NLRP3 inflammasome expression levels in lung tissues. Additionally, silibinin-treated groups exhibited a significant decrease in white blood cell counts, including neutrophils, lymphocytes, and eosinophils.
These findings underscore the potent anti-inflammatory effects of silibinin in mice with V2O5-induced lung inflammation, highlighting its therapeutic potential. The study not only confirms the efficacy of silibinin in mitigating inflammatory responses but also provides a foundational understanding of its role in modulating key inflammatory pathways, paving the way for future therapeutic strategies against pulmonary inflammation induced by environmental pollutants.
Copyright © 2024, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

Human adipose-derived stem cells (hASCs) play important roles in regenerative medicine and tissue engineering. However, their clinical applications are limited because of their instability during cell culture. Platelet lysates (PLTs) contain large amounts of growth factors that are useful for manufacturing cellular products. Platelet-derived growth factor (PDGF) is a major growth factor in PLTs and a potent mitogen in hASCs. To optimize growth conditions, the effects of a combination of growth factors on the promotion of hASC proliferation were investigated. Moreover, PDGF-BB combined with vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) markedly enhanced the viability of hASCs compared with the effects of PDGF-BB alone. Neither VEGF nor HGF had any effect alone. All growth factor receptor inhibitors inhibited cell proliferation. Wound healing assays revealed that VEGF and HGF stimulated PDGF-dependent cell migration. The effects of these growth factors on the activation of their cognate receptors and signaling enzymes were assessed using immunoblotting. Phosphorylation of PDGF receptor (PDGFR)β, VEGF receptor (VEGFR)2 and MET proto-oncogene and receptor tyrosine kinase was induced by PDGF-BB treatment, and was further increased by treatment with PDGF-BB/VEGF and PDGF-BB/HGF. The levels of phospho-ERK1/2 and phospho-p38MAPK were increased by these treatments in parallel. Furthermore, the expression levels of SRY-box transcription factor 2 and peroxisome proliferator-activated receptor g were increased in PDGF-BB-treated cells, and PDGF-BB played a dominant role in spheroid formation. The findings of the present study highlighted that PDGF/PDGFR signaling played a predominant role in the proliferation and migration of hASCs, and suggested that PDGF was responsible for the efficacy of other growth factors when hASCs were cultured with PLTs.
Copyright: © 2024 Sun et al.

Mycobacterium tuberculosis (Mtb) infection remains one of society's greatest human health challenges. Macrophages integrate multiple signals derived from ontogeny, infection, and the environment. This integration proceeds heterogeneously during infection. Some macrophages are infected, while others are not; therefore, bulk approaches mask the subpopulation dynamics. We establish a modular, targeted, single-cell protein analysis framework to study the immune response to Mtb. We demonstrate that during Mtb infection, only a small fraction of resting macrophages produce tumor necrosis factor (TNF) protein. We demonstrate that Mtb infection results in muted phosphorylation of p38 and JNK, regulators of inflammation, and leverage our single-cell methods to distinguish between pathogen-mediated interference in host signaling and weak activation of host pathways. We demonstrate that the inflammatory signal magnitude is decoupled from the ability to control Mtb growth. These data underscore the importance of developing pathogen-specific models of signaling and highlight barriers to activation of pathways that control inflammation.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.

Tyrosine Kinase Inhibitor Profiling Using Multiple Forskolin-Responsive Reporter Cells.

In International Journal of Molecular Sciences on 8 September 2023 by Kasahara, Y., Tamamura, S., et al.

We have developed a highly sensitive promoter trap vector system using transposons to generate reporter cells with high efficiency. Using an EGFP/luciferase reporter cell clone responsive to forskolin, which is thought to activate adenylate cyclase, isolated from human chronic myelogenous leukemia cell line K562, we found several compounds unexpectedly caused reporter responses. These included tyrosine kinase inhibitors such as dasatinib and cerdulatinib, which were seemingly unrelated to the forskolin-reactive pathway. To investigate whether any other clones of forskolin-responsive cells would show the same response, nine additional forskolin-responsive clones, each with a unique integration site, were generated and quantitatively evaluated by luciferase assay. The results showed that each clone represented different response patterns to the reactive compounds. Also, it became clear that each of the reactive compounds could be profiled as a unique pattern by the 10 reporter clones. When other TKIs, mainly bcr-abl inhibitors, were evaluated using a more focused set of five reporter clones, they also showed unique profiling. Among them, dasatinib and bosutinib, and imatinib and bafetinib showed homologous profiling. The tyrosine kinase inhibitors mentioned above are approved as anticancer agents, and the system could be used for similarity evaluation, efficacy prediction, etc., in the development of new anticancer agents.

Combinatorial Anticancer Drug Screen Identifies Off-Target Effects of Epigenetic Chemical Probes.

In ACS Chemical Biology on 21 October 2022 by Barghout, S. H., Mann, M. K., et al.

Anticancer drug response is determined by genetic and epigenetic mechanisms. To identify the epigenetic regulators of anticancer drug response, we conducted a chemical epigenetic screen using chemical probes that target different epigenetic modulators. In this screen, we tested 31 epigenetic probes in combination with 14 mechanistically diverse anticancer agents and identified 8 epigenetic probes that significantly potentiate the cytotoxicity of TAK-243, a first-in-class ubiquitin-activating enzyme (UBA1) inhibitor evaluated in several solid and hematologic malignancies. These probes are TP-472, GSK864, A-196, UNC1999, SGC-CBP30, and PFI-4 (and its related analogues GSK6853 and GSK5959), and they target BRD9/7, mutant IDH1, SUV420H1/2, EZH2/1, p300/CBP, and BRPF1B, respectively. In contrast to epigenetic probes, negative control compounds did not have a significant impact on TAK-243 cytotoxicity. Potentiation of TAK-243 cytotoxicity was associated with reduced ubiquitylation and induction of apoptosis. Mechanistically, these epigenetic probes exerted their potentiation by inhibiting the efflux transporter ATP-binding cassette subfamily G member 2 (ABCG2) without inducing significant changes in the ubiquitylation pathways or ABCG2 expression levels. As assessed by docking analysis, the identified probes could potentially interact with ABCG2. Based on these data, we have developed a cell-based assay that can quantitatively evaluate ABCG2 inhibition by drug candidates. In conclusion, our study identifies epigenetic probes that profoundly potentiate TAK-243 cytotoxicity through off-target ABCG2 inhibition. We also provide experimental evidence that several negative control compounds cannot exclude a subset of off-target effects of chemical probes. Finally, potentiation of TAK-243 cytotoxicity can serve as a quantitative measure of ABCG2-inhibitory activity.

View this product on CiteAb