Product Citations: 83

Powered by

Human striatal progenitor cells that contain inducible safeguards and overexpress BDNF rescue Huntington's disease phenotypes.

In Molecular Therapy. Methods Clinical Development on 13 March 2025 by Simmons, D. A., Selvaraj, S., et al.

Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder characterized by striatal atrophy. Reduced trophic support due to decreased striatal levels of neurotrophins (NTs), mainly brain-derived neurotrophic factor (BDNF), contributes importantly to HD pathogenesis; restoring NTs has significant therapeutic potential. Human pluripotent stem cells (hPSCs) offer a scalable platform for NT delivery but have potential safety risks including teratoma formation. We engineered hPSCs to constitutively produce BDNF and contain inducible safeguards to eliminate these cells if safety concerns arise. This study examined the efficacy of intrastriatally transplanted striatal progenitor cells (STRpcs) derived from these hPSCs against HD phenotypes in R6/2 mice. Engrafted STRpcs overexpressing BDNF alleviated motor and cognitive deficits and reduced mutant huntingtin aggregates. Activating the inducible safety switch with rapamycin safely eliminated the engrafted cells. These results demonstrate that BDNF delivery via a novel hPSC-based platform incorporating safety switches could be a safe and effective HD therapeutic.
© 2025 The Author(s).

Dichotomous outcomes of TNFR1 and TNFR2 signaling in NK cell-mediated immune responses during inflammation.

In Nature Communications on 14 November 2024 by McCulloch, T., Rossi, G. R., et al.

Natural killer (NK) cell function is regulated by a balance of activating and inhibitory signals. Tumor necrosis factor (TNF) is an inflammatory cytokine ubiquitous across homeostasis and disease, yet its role in regulation of NK cells remains unclear. Here, we find upregulation of the immune checkpoint protein, T cell immunoglobulin and mucin domain 3 (Tim3), is a biomarker of TNF signaling in NK cells during Salmonella Typhimurium infection. In mice with conditional deficiency of either TNF receptor 1 (TNFR1) or TNF receptor 2 (TNFR2) in NK cells, we find TNFR1 limits bacterial clearance whereas TNFR2 promotes it. Mechanistically, via single cell RNA sequencing we find that both TNFR1 and TNFR2 induce the upregulation of Tim3, while TNFR1 accelerates NK cell death but TNFR2 promotes NK cell accumulation and effector function. Our study thus highlights the complex interplay of TNF-based regulation of NK cells by the two TNF receptors during inflammation.
© 2024. The Author(s).

To minimize off-target adverse effects and improve drug efficacy, various tissue-specific drug delivery systems have been developed. However, even in diseased organs, both normal and stressed, dying cells coexist, and a targeted delivery system specifically for dying cells has yet to be explored to mitigate off-target effects within the same organ. This study aimed to establish such a system. By examining the surfaces of dying cells in vitro, we identified P-selectin glycoprotein ligand-1 (PSGL-1) as a universal marker for dying cells, positioning it as a potential target for selective drug delivery. We demonstrated that liposomes conjugated with the PSGL-1 binding protein P-selectin had significantly greater binding efficiency to dying cells compared to control proteins such as E-selectin, L-selectin, galectin-1, and C-type lectin-like receptor 2. Using thioacetamide (TAA) to induce hepatitis and hepatocyte damage in mice, we assessed the effectiveness of our P-selectin-based delivery system. In vivo, P-selectin-conjugated liposomes effectively delivered fluorescent dye and the apoptosis inhibitor z-DEVD to TAA-damaged livers in wild-type mice, but not in PSGL-1 knockout mice. In TAA-treated wild-type mice, unconjugated liposomes required a 100-fold higher z-DEVD dose compared to P-selectin-conjugated liposomes to achieve a comparable, albeit less effective, therapeutic outcome in lowering plasma alanine transaminase levels and alleviating thrombocytopenia. This emphasizes that P-selectin conjugation enhances drug delivery efficiency by approximately 100-fold in mice. These results suggest that P-selectin-based liposomes could be a promising strategy for targeted drug delivery, enabling both diagnosis and treatment by specifically delivering cell-labeling agents and rescue agents to dying cells via the P-selectin-PSGL-1 axis at the individual cell level.

Hypoxia-Induced Long Noncoding RNA HIF1A-AS2 Regulates Stability of MHC Class I Protein in Head and Neck Cancer.

In Cancer Immunology Research on 1 October 2024 by Liao, T. T., Chen, Y. H., et al.

Intratumoral hypoxia not only promotes angiogenesis and invasiveness of cancer cells but also creates an immunosuppressive microenvironment that facilitates tumor progression. However, the mechanisms by which hypoxic tumor cells disseminate immunosuppressive signals remain unclear. In this study, we demonstrate that a hypoxia-induced long noncoding RNA HIF1A Antisense RNA 2 (HIF1A-AS2) is upregulated in hypoxic tumor cells and hypoxic tumor-derived exosomes in head and neck squamous cell carcinoma (HNSCC). Hypoxia-inducible factor 1 alpha (HIF1α) was found to directly bind to the regulatory region of HIF1A-AS2 to enhance its expression. HIF1A-AS2 reduced the protein stability of major histocompatibility complex class I (MHC-I) by promoting the interaction between the autophagy cargo receptor neighbor of BRCA1 gene 1 (NBR1) protein and MHC-I, thereby increasing the autophagic degradation of MHC-I. In HNSCC samples, the expression of HIF1A-AS2 was found to correlate with hypoxic signatures and advanced clinical stages. Patients with high HIF1α and low HLA-ABC expression showed reduced infiltration of CD8+ T cells. These findings define a mechanism of hypoxia-mediated immune evasion in HNSCC through downregulation of antigen-presenting machinery via intracellular or externalized hypoxia-induced long noncoding RNA.
©2024 The Authors; Published by the American Association for Cancer Research.

Airway epithelial cells represent the first line of defense against respiratory pathogens. Flagellin drives the motility of many mucosal pathogens and has been suggested as an immune enhancing adjunctive therapeutic in infections of the airways. This study leveraged single-cell RNA sequencing to determine cell-specific effects of flagellin in primary human bronchial epithelial cells growing in air-liquid interface. Seven cell clusters were identified, including ciliated cells, ionocytes, and several states of basal and secretory cells, of which only inflammatory basal cells and inflammatory secretory cells demonstrated a proportional increase in response to flagellin. Inflammatory secretory cells showed evidence of metabolic reprogramming toward aerobic glycolysis, while in inflammatory basal cells transcriptome profiles indicated enhanced oxidative phosphorylation. Inhibition of mTOR prevented the shift to glycolysis and reduced inflammatory gene transcription specifically in inflammatory secretory cells. These data demonstrate the functional heterogeneity of the human airway epithelium upon exposure to flagellin.
© 2024 The Authors.

View this product on CiteAb