Product Citations: 14

Powered by

Hypermetabolic state is associated with circadian rhythm disruption in mouse and human cancer cells.

In Proceedings of the National Academy of Sciences of the United States of America on 23 July 2024 by Iascone, D. M., Zhang, X., et al.

Crosstalk between metabolism and circadian rhythms is a fundamental building block of multicellular life, and disruption of this reciprocal communication could be relevant to disease. Here, we investigated whether maintenance of circadian rhythms depends on specific metabolic pathways, particularly in the context of cancer. We found that in adult mouse fibroblasts, ATP levels were a major contributor to signal from a clock gene luciferase reporter, although not necessarily to the strength of circadian cycling. In contrast, we identified significant metabolic control of circadian function across a series of pancreatic adenocarcinoma cell lines. Metabolic profiling of congenic tumor cell clones revealed substantial diversity among these lines that we used to identify clones to generate circadian reporter lines. We observed diverse circadian profiles among these lines that varied with their metabolic phenotype: The most hypometabolic line [exhibiting low levels of oxidative phosphorylation (OxPhos) and glycolysis] had the strongest rhythms, while the most hypermetabolic line had the weakest rhythms. Pharmacological enhancement of OxPhos decreased the amplitude of circadian oscillation in a subset of tumor cell lines. Strikingly, inhibition of OxPhos enhanced circadian rhythms only in the tumor cell line in which glycolysis was also low, thereby establishing a hypometabolic state. We further analyzed metabolic and circadian phenotypes across a panel of human patient-derived melanoma cell lines and observed a significant negative association between metabolic activity and circadian cycling strength. Together, these findings suggest that metabolic heterogeneity in cancer directly contributes to circadian function and that high levels of glycolysis or OxPhos independently disrupt circadian rhythms in these cells.

Here, we present a protocol for preclinical evaluation of locoregionally delivered CAR T cells in patient-derived xenograft models of primary, metastatic, and recurrent brain tumors. We provide instructions for isolating peripheral blood mononuclear cells (PBMCs), producing CAR T cells in conjunction with locoregional delivery, and preclinical trial design and analysis involving CAR T cells. Additionally, we describe comprehensive preclinical readouts and guidelines for critical endpoint sample collections. In line with clinical trial procedures, our protocol broadens available treatment modalities for direct clinical translation. For complete details on the use and execution of this protocol, please refer to Donovan et al.1.Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.

Monitoring Circadian Oscillations with a Bioluminescence Reporter in Organoids.

In Journal of Visualized Experiments : JoVE on 16 February 2024 by Goker, S., Lee, S., et al.

Most living organisms possess circadian rhythms, which are biological processes that occur within a period of approximately 24 h and regulate a diverse repertoire of cellular and physiological processes ranging from sleep-wake cycles to metabolism. This clock mechanism entrains the organism based on environmental changes and coordinates the temporal regulation of molecular and physiological events. Previously, it was demonstrated that autonomous circadian rhythms are maintained even at the single-cell level using cell lines such as NIH3T3 fibroblasts, which were instrumental in uncovering the mechanisms of circadian rhythms. However, these cell lines are homogeneous cultures lacking multicellularity and robust intercellular communications. In the past decade, extensive work has been performed on the development, characterization, and application of 3D organoids, which are in vitro multicellular systems that resemble in vivo morphological structures and functions. This paper describes a protocol for detecting circadian rhythms using a bioluminescent reporter in human intestinal enteroids, which enables the investigation of circadian rhythms in multicellular systems in vitro.

Generation of chimeric antigen receptor macrophages from human pluripotent stem cells to target glioblastoma.

In Immunooncol Technol on 1 December 2023 by Jin, G., Chang, Y., et al.

Glioblastoma (GBM) is an aggressive brain tumor giving a poor prognosis with the current treatment options. The advent of chimeric antigen receptor (CAR) T-cell therapy revolutionized the field of immunotherapy and has provided a new set of therapeutic options for refractory blood cancers. In an effort to apply this therapeutic approach to solid tumors, various immune cell types and CAR constructs are being studied. Notably, macrophages have recently emerged as potential candidates for targeting solid tumors, attributed to their inherent tumor-infiltrating capacity and abundant presence in the tumor microenvironment.
In this study, we developed a chemically defined differentiation protocol to generate macrophages from human pluripotent stem cells (hPSCs). A GBM-specific CAR was genetically incorporated into hPSCs to generate CAR hPSC-derived macrophages.
The CAR hPSC-derived macrophages exhibited potent anticancer activity against GBM cells in vitro.
Our findings demonstrate the feasibility of generating functional CAR-macrophages from hPSCs for adoptive immunotherapy, thereby opening new avenues for the treatment of solid tumors, particularly GBM.
© 2023 The Author(s).

Hypermetabolic state is associated with circadian rhythm disruption in mouse and human cancer cells

Preprint on BioRxiv : the Preprint Server for Biology on 13 November 2023 by Iascone, D. M., Zhang, X., et al.

Crosstalk between cellular metabolism and circadian rhythms is a fundamental building block of multicellular life, and disruption of this reciprocal communication could be relevant to degenerative disease, including cancer. Here, we investigated whether maintenance of circadian rhythms depends upon specific metabolic pathways, particularly in the context of cancer. We found that in adult mouse fibroblasts, ATP levels were a major contributor to overall levels of a clock gene luciferase reporter, although not necessarily to the strength of circadian cycling. In contrast, we identified significant metabolic control of circadian function in an in vitro mouse model of pancreatic adenocarcinoma. Metabolic profiling of a library of congenic tumor cell clones revealed significant differences in levels of lactate, pyruvate, ATP, and other crucial metabolites that we used to identify candidate clones with which to generate circadian reporter lines. Despite the shared genetic background of the clones, we observed diverse circadian profiles among these lines that varied with their metabolic phenotype: the most hypometabolic line had the strongest circadian rhythms while the most hypermetabolic line had the weakest rhythms. Treatment of these tumor cell lines with bezafibrate, a peroxisome proliferator-activated receptor (PPAR) agonist shown to increase OxPhos, decreased the amplitude of circadian oscillation in a subset of tumor cell lines. Strikingly, treatment with the Complex I antagonist rotenone enhanced circadian rhythms only in the tumor cell line in which glycolysis was also low, thereby establishing a hypometabolic state. We further analyzed metabolic and circadian phenotypes across a panel of human patient-derived melanoma cell lines and observed a significant negative association between metabolic activity and circadian cycling strength. Together, these findings suggest that metabolic heterogeneity in cancer directly contributes to circadian function, and that high levels of glycolysis or OxPhos independently disrupt circadian rhythms in these cells.

View this product on CiteAb