Product Citations: 6

Powered by

Emergence of large-scale cell death through ferroptotic trigger waves.

In Nature on 1 July 2024 by Co, H. K., Wu, C. C., et al.

Large-scale cell death is commonly observed during organismal development and in human pathologies1-5. These cell death events extend over great distances to eliminate large populations of cells, raising the question of how cell death can be coordinated in space and time. One mechanism that enables long-range signal transmission is trigger waves6, but how this mechanism might be used for death events in cell populations remains unclear. Here we demonstrate that ferroptosis, an iron- and lipid-peroxidation-dependent form of cell death, can propagate across human cells over long distances (≥5 mm) at constant speeds (around 5.5 μm min-1) through trigger waves of reactive oxygen species (ROS). Chemical and genetic perturbations indicate a primary role of ROS feedback loops (Fenton reaction, NADPH oxidase signalling and glutathione synthesis) in controlling the progression of ferroptotic trigger waves. We show that introducing ferroptotic stress through suppression of cystine uptake activates these ROS feedback loops, converting cellular redox systems from being monostable to being bistable and thereby priming cell populations to become bistable media over which ROS propagate. Furthermore, we demonstrate that ferroptosis and its propagation accompany the massive, yet spatially restricted, cell death events during muscle remodelling of the embryonic avian limb, substantiating its use as a tissue-sculpting strategy during embryogenesis. Our findings highlight the role of ferroptosis in coordinating global cell death events, providing a paradigm for investigating large-scale cell death in embryonic development and human pathologies.
© 2024. The Author(s).

Roles of redox signaling in bladder function is still under investigation. We explored the physiological role of reactive oxygen species (ROS) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) in regulating bladder function in humans and dogs. Mucosa-denuded bladder smooth muscle strips obtained from 7 human organ donors and 4 normal dogs were mounted in muscle baths, and trains of electrical field stimulation (EFS) applied for 20 minutes at 90-second intervals. Subsets of strips were incubated with hydrogen peroxide (H2O2), angiotensin II (Ang II; Nox activator), apocynin (inhibitor of Noxs and ROS scavenger), or ZD7155 (specific inhibitor of angiotensin type 1 (AT1) receptor) for 20 minutes in continued EFS trains. Subsets treated with inhibitors were then treated with H2O2 or Ang II. In human and dog bladders, the ROS, H2O2 (100μM), caused contractions and enhanced EFS-induced contractions. Apocynin (100μM) attenuated EFS-induced strip contractions in both species; subsequent treatment with H2O2 restored strip activity. In human bladders, Ang II (1μM) did not enhance EFS-induced contractions yet caused direct strip contractions. In dog bladders, Ang II enhanced both EFS-induced and direct contractions. Ang II also partially restored EFS-induced contractions attenuated by prior apocynin treatment. In both species, treatment with ZD7155 (10μM) inhibited EFS-induced activity; subsequent treatment with Ang II did not restore strip activity. Collectively, these data provide evidence that ROS can modulate bladder function without exogenous stimuli. Since inflammation is associated with oxidative damage, the effects of Ang II on bladder smooth muscle function may have pathologic implications.
Copyright: © 2023 Frara et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Reduced inspired oxygen decreases retinal superoxide radicals and promotes cone function and survival in a model of retinitis pigmentosa.

In Free Radical Biology and Medicine on 1 March 2023 by Kanan, Y., Hackett, S. F., et al.

Retinitis pigmentosa (RP) is caused by many different mutations that promote the degeneration of rod photoreceptors and have no direct effect on cones. After the majority of rods have died cone photoreceptors begin to slowly degenerate. Oxidative damage contributes to cone cell death and it has been hypothesized that tissue hyperoxia due to reduced oxygen consumption from the loss of rods is what initiates oxidative stress. Herein, we demonstrate in animal models of RP that reduction of retinal hyperoxia by reducing inspired oxygen to continuous breathing of 11% O2 reduced the generation of superoxide radicals in the retina and preserved cone structure and function. These data indicate that retinal hyperoxia is the initiating event that promotes oxidative damage, loss of cone function, and cone degeneration in the RP retina.
Copyright © 2023 Elsevier Inc. All rights reserved.

Human Placental NADPH Oxidase Mediates sFlt-1 and PlGF Secretion in Early Pregnancy: Exploration of the TGF-β1/p38 MAPK Pathways.

In Antioxidants (Basel, Switzerland) on 12 February 2021 by Hernandez, I., Chissey, A., et al.

Preeclampsia, a hypertensive disorder occurring during pregnancy, is characterized by excessive oxidative stress and trophoblast dysfunction with dysregulation of soluble Fms-like tyrosine kinase 1 (sFlt-1) and placental growth factor (PlGF) production. Nicotinamide Adenine Dinucleotide Phosphate (NADPH) oxidase (Nox) is the major source of placental superoxide in early pregnancy and its activation with the subsequent formation of superoxide has been demonstrated for various agents including Transforming Growth Factor beta-1 (TGF-β1), a well-known p38 MAPK pathway activator. However, the bridge between Nox and sFlt-1 remains unknown. The purpose of this study was to explore the possible signaling pathway of TGF-β1/Nox/p38 induced sFlt-1 production in human chorionic villi (CV).
Human chorionic villi from first trimester placenta (7-9 Gestational Weeks (GW)) were treated with TGF-β1 or preincubated with p38 inhibitor, SB203580. For NADPH oxidase inhibition, CV were treated with diphenyleneiodonium (DPI). The protein levels of phospho-p38, p38, phospho-Mothers Against Decapentaplegic homolog 2 (SMAD2), and SMAD2 were detected by Western blot. The secretion of sFlt-1 and PlGF by chorionic villi were measured with Electrochemiluminescence Immunologic Assays, and NADPH oxidase activity was monitored by lucigenin method.
We demonstrate for the first time that NADPH oxidase is involved in sFlt-1 and PlGF secretion in first trimester chorionic villi. Indeed, the inhibition of Nox by DPI decreases sFlt-1, and increases PlGF secretions. We also demonstrate the involvement of p38 MAPK in sFlt-1 secretion and Nox activation as blocking the p38 MAPK phosphorylation decreases both sFlt-1 secretion and superoxide production. Nevertheless, TGF-β1-mediated p38 activation do not seem to be involved in regulation of the first trimester placental angiogenic balance and no crosstalk was found between SMAD2 and p38 MAPK pathways.
Thus, the placental NADPH oxidase play a major role in mediating the signal transduction cascade of sFlt-1 production. Furthermore, we highlight for the first time the involvement of p38 activation in first trimester placental Nox activity.

NADPH oxidase is the major source of placental superoxide in early pregnancy: association with MAPK pathway activation.

In Scientific Reports on 27 September 2019 by Hernandez, I., Fournier, T., et al.

First-trimester placenta (<10 gestational weeks (GW)) develops in a low oxygen environment (≈2%). Early oxygen exposure can cause oxidative damage leading to pregnancy disorders. The aim of this work was to determine the major sources of placental superoxide during early pregnancy - more specifically before 10 GW - and to study redox adaptation to increased oxygen pressure after 12 GW. Our results show that NADPH oxidase (Nox) is the main source of superoxide in first-trimester chorionic villi. Its activity is higher before 10 GW and concomitant with the location on the syncytiotrophoblast apical pole of p47phox, the Nox organizer subunit. After the increase in pO2 pressure (12-14 GW), the activities of the antioxidant enzymes SOD1, catalase and GPX1 are increased. The redox-sensitive MAPK pathways show increased phosphorylated-p38 expression, but no variation in the phosphorylation of stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK) during first trimester, suggesting a physiological redox adaptation, whilst ERK1/2 phosphorylation is higher after 12 GW. Nox is the major superoxide source in early pregnancy (<10 GW). Increased superoxide production at 7-9 GW is associated with p38 MAPK pathway activation, suggesting that it is involved in physiological placental function and healthy early development of the placenta, through MAPK pathways.

View this product on CiteAb