Product Citations: 3

Powered by

Response and resistance to CDK12 inhibition in aggressive B-cell lymphomas.

In Haematologica on 1 May 2022 by Gao, J., Wang, M. Y., et al.

Despite significant progress in the treatment of patients with diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL), the prognosis of patients with relapsed disease remains poor due to the emergence of drug resistance and subsequent disease progression. Identification of novel targets and therapeutic strategies for these diseases represents an urgent need. Here, we report that both MCL and DLBCL are exquisitely sensitive to transcription-targeting drugs, in particular THZ531, a covalent inhibitor of cyclin-dependent kinase 12 (CDK12). By implementing pharmacogenomics and a cell-based drug screen, we found that THZ531 leads to inhibition of oncogenic transcriptional programs, especially the DNA damage response pathway, MYC target genes and the mTOR-4EBP1-MCL-1 axis, contributing to dramatic lymphoma suppression in vitro. We also identified de novo and established acquired THZ531-resistant lymphoma cells conferred by over-activation of the MEK-ERK and PI3K-AKT-mTOR pathways and upregulation of multidrug resistance-1 (MDR1) protein. Of note, EZH2 inhibitors reversed resistance to THZ531 by competitive inhibition of MDR1 and, in combination with THZ531, synergistically inhibited MCL and DLBCL growth in vitro. Our study indicates that CDK12 inhibitors, alone or together with EZH2 inhibitors, offer promise as novel effective approaches for difficult-to-treat DLBCL and MCL.

Transcriptional programming drives Ibrutinib-resistance evolution in mantle cell lymphoma.

In Cell Reports on 16 March 2021 by Zhao, X., Wang, M. Y., et al.

Ibrutinib, a bruton's tyrosine kinase (BTK) inhibitor, provokes robust clinical responses in aggressive mantle cell lymphoma (MCL), yet many patients relapse with lethal Ibrutinib-resistant (IR) disease. Here, using genomic, chemical proteomic, and drug screen profiling, we report that enhancer remodeling-mediated transcriptional activation and adaptive signaling changes drive the aggressive phenotypes of IR. Accordingly, IR MCL cells are vulnerable to inhibitors of the transcriptional machinery and especially so to inhibitors of cyclin-dependent kinase 9 (CDK9), the catalytic subunit of the positive transcription elongation factor b (P-TEFb) of RNA polymerase II (RNAPII). Further, CDK9 inhibition disables reprogrammed signaling circuits and prevents the emergence of IR in MCL. Finally, and importantly, we find that a robust and facile ex vivo image-based functional drug screening platform can predict clinical therapeutic responses of IR MCL and identify vulnerabilities that can be targeted to disable the evolution of IR.
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.

Drug-tolerant "persister" tumor cells underlie emergence of drug-resistant clones and contribute to relapse and disease progression. Here we report that resistance to the BCL-2 targeting drug ABT-199 in models of mantle cell lymphoma and double-hit lymphoma evolves from outgrowth of persister clones displaying loss of 18q21 amplicons that harbor BCL2. Further, persister status is generated via adaptive super-enhancer remodeling that reprograms transcription and offers opportunities for overcoming ABT-199 resistance. Notably, pharmacoproteomic and pharmacogenomic screens revealed that persisters are vulnerable to inhibition of the transcriptional machinery and especially to inhibition of cyclin-dependent kinase 7 (CDK7), which is essential for the transcriptional reprogramming that drives and sustains ABT-199 resistance. Thus, transcription-targeting agents offer new approaches to disable drug resistance in B-cell lymphomas.
Copyright © 2019 Elsevier Inc. All rights reserved.

View this product on CiteAb