Product Citations: 20

Powered by

The vagus nerve is proposed to enable communication between the gut microbiome and the brain, but activity-based evidence is lacking. We find that mice reared germ-free exhibit decreased vagal tone relative to colonized controls, which is reversed via microbiota restoration. Perfusing antibiotics into the small intestines of conventional mice, but not germ-free mice, acutely decreases vagal activity which is restored upon re-perfusion with intestinal filtrates from conventional, but not germ-free, mice. Microbiome-dependent short-chain fatty acids, bile acids, and 3-indoxyl sulfate indirectly stimulate vagal activity in a receptor-dependent manner. Serial perfusion of each metabolite class activates both shared and distinct neuronal subsets with varied response kinetics. Metabolite-induced and receptor-dependent increases in vagal activity correspond with the activation of brainstem neurons. Results from this study reveal that the gut microbiome regulates select metabolites in the intestinal lumen that differentially activate vagal afferent neurons, thereby enabling the microbial modulation of chemosensory signals for gut-brain communication.
© 2024 The Author(s).

An early, novel arginine methylation of KCa3.1 attenuates subsequent T cell exhaustion.

Preprint on Research Square on 28 November 2024 by Green, D., Sharma, P., et al.

Abstract T cell receptor (TCR) engagement initiates the activation process, and this signaling event is regulated in multifaceted ways. Nutrient availability in the immediate niche is one such mode of regulation. Here, we investigated how the availability of an essential amino acid methionine (Met) and TCR signaling might interplay in the earliest events of T cell activation to affect subsequent T cell fate and function. We found that limiting Met during only the initial 30 minutes of CD8+ T cell activation increased Ca2+ influx, Ca2+-mediated NFAT1 (Nfatc2) activation, NFAT1 promoter occupancy, and T cell exhaustion. We identified changes in the protein arginine methylome during the initial 30 min of TCR engagement and discovered a novel arginine methylation of a Ca2+-activated potassium transporter, KCa3.1, which regulates Ca2+-mediated NFAT1 signaling to ensure optimal activation. Ablation of arginine methylation in KCa3.1 led to increased NFAT1 activation, rendering T cells dysfunctional in murine tumour and infection models. Furthermore, acute Met supplementation at early stages reduced nuclear NFAT1 in tumour-infiltrating T cells and augmented their anti-tumour activity. Our findings identify a metabolic event occurring early after T cell activation that influences the subsequent fate of the cell.

Functional characterization of native Piezo1 as calcium and magnesium influx pathway in human myeloid leukemia cells.

In Journal of Cellular Physiology on 1 November 2024 by Vasileva, V. Y., Lysikova, D. V., et al.

Piezo1 is a Ca2+-permeable mechanically activated ion channel that is involved in various physiological processes and cellular responses to mechanical stimuli. The study of biophysical characteristics of Piezo1 is important for understanding the mechanisms of its function and regulation. Stretch activation, a routine approach that is applied to stimulate Piezo1 activity in the plasma membrane, has a number of significant limitations that complicate precise single-channel analysis. Here, we aimed to determine pore properties of native Piezo1, specifically to examine permeation for physiologically relevant signaling divalent ions (calcium and magnesium) in human myeloid leukemia K562 cells using Piezo1-specific chemical agonist, Yoda1. Using a combination of low-noise single-current patch-clamp recordings of Piezo1 activity in response to Yoda1, we have determined single-channel characteristics of native Piezo1 under various ionic conditions. Whole-cell assay allowed us to directly measure Piezo1 single currents carried by Ca2+ or Mg2+ ions in the absence of other permeable cations in the extracellular solutions; unitary conductance values estimated at various concentrations of Mg2+ revealed strong saturation effect. Patch clamp data complemented with fluorescent imaging clearly evidenced Ca2+ and Mg2+ entry via native Piezo1 channel in human leukemia K562 cells. Mg2+ influx via Piezo1 was detected under quasi-physiological conditions, thus showing that Piezo1 channels could potentially provide the physiological relevant pathway for Mg2+ ion transport and contribute to the regulation of Mg2+-dependent intracellular signaling.
© 2024 Wiley Periodicals LLC.

Bioengineered Model of Human LGMD2B Skeletal Muscle Reveals Roles of Intracellular Calcium Overload in Contractile and Metabolic Dysfunction in Dysferlinopathy.

In Advanced Science (Weinheim, Baden-Wurttemberg, Germany) on 1 August 2024 by Bursac, N., Prabhu, N. K., et al.

Dysferlin is a multi-functional protein that regulates membrane resealing, calcium homeostasis, and lipid metabolism in skeletal muscle. Genetic loss of dysferlin results in limb girdle muscular dystrophy 2B/2R (LGMD2B/2R) and other dysferlinopathies - rare untreatable muscle diseases that lead to permanent loss of ambulation in humans. The mild disease severity in dysferlin-deficient mice and diverse genotype-phenotype relationships in LGMD2B patients have prompted the development of new in vitro models for personalized studies of dysferlinopathy. Here the first 3-D tissue-engineered hiPSC-derived skeletal muscle ("myobundle") model of LGMD2B is described that exhibits compromised contractile function, calcium-handling, and membrane repair, and transcriptomic changes indicative of impaired oxidative metabolism and mitochondrial dysfunction. In response to the fatty acid (FA) challenge, LGMD2B myobundles display mitochondrial deficits and intracellular lipid droplet (LD) accumulation. Treatment with the ryanodine receptor (RyR) inhibitor dantrolene or the dissociative glucocorticoid vamorolone restores LGMD2B contractility, improves membrane repair, and reduces LD accumulation. Lastly, it is demonstrated that chemically induced chronic RyR leak in healthy myobundles phenocopies LGMD2B contractile and metabolic deficit, but not the loss of membrane repair capacity. Together, these results implicate intramyocellular Ca2+ leak as a critical driver of dysferlinopathic phenotype and validate the myobundle system as a platform to study LGMD2B pathogenesis.
© 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.

A Humanized CB1R Yeast Biosensor Enables Facile Screening of Cannabinoid Compounds.

In International Journal of Molecular Sciences on 31 May 2024 by Mulvihill, C. J., Lutgens, J. D., et al.

Yeast expression of human G-protein-coupled receptors (GPCRs) can be used as a biosensor platform for the detection of pharmaceuticals. Cannabinoid receptor type 1 (CB1R) is of particular interest, given the cornucopia of natural and synthetic cannabinoids being explored as therapeutics. We show for the first time that engineering the N-terminus of CB1R allows for efficient signal transduction in yeast, and that engineering the sterol composition of the yeast membrane modulates its performance. Using an engineered cannabinoid biosensor, we demonstrate that large libraries of synthetic cannabinoids and terpenes can be quickly screened to elucidate known and novel structure-activity relationships. The biosensor strains offer a ready platform for evaluating the activity of new synthetic cannabinoids, monitoring drugs of abuse, and developing therapeutic molecules.

View this product on CiteAb