The efficacy of immunotherapy in pancreatic ductal adenocarcinoma (PDAC) remains limited. The tumor microenvironment (TME), characterized by the accumulation of suppressive myeloid cells including neutrophils, attributes to immunotherapy resistance in PDAC. IgA monoclonal antibodies (mAbs) can activate neutrophils to kill tumor cells; this can be further enhanced by blocking the myeloid immune checkpoint CD47. In this study, we investigated the potential of this therapeutic strategy for PDAC. We determined the expression of tumor-associated antigens (TAAs) on PDAC cell lines and fresh patient samples, and the results showed that the TAAs epithelial cell adhesion molecule (EpCAM), trophoblast cell surface antigen 2 (TROP2) and mucin-1 (MUC1), as well as CD47 were consistently expressed on PDAC. In line with this, we showed that IgA mAbs against EpCAM can activate neutrophils to lyse various PDAC cell lines and tumor cells, which can be augmented by addition of CD47 blockade. In addition, we observed that neutrophils were present in patient tumors and expressed the receptor for IgA. In conclusion, our results indicate that a combination of IgA mAb with CD47 blockade is a promising preclinical treatment strategy for PDAC, which merits further investigation.