Product Citations: 9

Generation of human ILC3 from allogeneic and autologous CD34+ hematopoietic progenitors toward adoptive transfer.

In Cytotherapy on 1 February 2024 by Van der Meer, J. M. R., Bulder, I., et al.

Type 3 innate lymphoid cells (ILC3) are important in tissue homeostasis. In the gut, ILC3 repair damaged epithelium and suppress inflammation. In allogeneic hematopoietic cell transplantation (HCT), ILC3 protect against graft-versus-host disease (GvHD), most likely by restoring tissue damage and preventing inflammation. We hypothesize that supplementing HCT grafts with interleukin-22 (IL-22)-producing ILC3 may prevent acute GvHD. We therefore explored ex vivo generation of human IL-22-producing ILC3 from hematopoietic stem and progenitor cells (HSPC) obtained from adult, neonatal and fetal sources. We established a stroma-free system culturing human cord blood-derived CD34+ HSPC with successive cytokine mixes for 5 weeks. We analyzed the presence of phenotypically defined ILC, their viability, proliferation and IL-22 production (after stimulation) by flow cytometry and enzyme-linked immunosorbent assay (ELISA). We found that the addition of recombinant human IL-15 and the enhancer of zeste homolog 1/2 inhibitor UNC1999 promoted ILC3 generation. Similar results were demonstrated when UNC1999 was added to CD34+ HSPC derived from healthy adult granulocyte colony-stimulating factor mobilized peripheral blood and bone marrow, but not fetal liver. UNC1999 did not negatively impact IL-22 production in any of the HSPC sources. Finally, we observed that autologous HSPC mobilized from the blood of adults with hematological malignancies also developed into ILC3, albeit with a significantly lower capacity. Together, we developed a stroma-free protocol to generate large quantities of IL-22-producing ILC3 from healthy adult human HSPC that can be applied for adoptive transfer to prevent GvHD after allogeneic HCT.
Copyright © 2023 International Society for Cell & Gene Therapy. Published by Elsevier Inc. All rights reserved.

  • Homo sapiens (Human)

Bispecific T cell engagers (bsTCEs) hold great promise for cancer treatment but face challenges due to the induction of cytokine release syndrome (CRS), on-target off-tumor toxicity, and the engagement of immunosuppressive regulatory T cells that limit efficacy. The development of Vγ9Vδ2-T cell engagers may overcome these challenges by combining high therapeutic efficacy with limited toxicity. By linking a CD1d-specific single-domain antibody (VHH) to a Vδ2-TCR-specific VHH, we create a bsTCE with trispecific properties, which engages not only Vγ9Vδ2-T cells but also type 1 NKT cells to CD1d+ tumors and triggers robust proinflammatory cytokine production, effector cell expansion, and target cell lysis in vitro. We show that CD1d is expressed by the majority of patient MM, (myelo)monocytic AML, and CLL cells and that the bsTCE triggers type 1 NKT and Vγ9Vδ2-T cell-mediated antitumor activity against these patient tumor cells and improves survival in in vivo AML, MM, and T-ALL mouse models. Evaluation of a surrogate CD1d-γδ bsTCE in NHPs shows Vγ9Vδ2-T cell engagement and excellent tolerability. Based on these results, CD1d-Vδ2 bsTCE (LAVA-051) is now evaluated in a phase 1/2a study in patients with therapy refractory CLL, MM, or AML.
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology

t(1;7;22)(p13;q21;q13) is a novel 3-way variant of t(1;22)(p13;q13) neonatal acute megakaryoblastic leukemia: A case report.

In Molecular and Clinical Oncology on 1 March 2023 by Messiaen, J., Uyttebroeck, A., et al.

Acute megakaryoblastic leukemia (AMKL) is a rare disease, occurring mostly in infants and young children. The chromosomal translocation t(1;22)(p13;q13), resulting in the RBM15-MKL1 fusion gene, is a recurrent and diagnostic translocation in infants with AMKL. The present case report describes a case of a newborn girl, without Down's syndrome, with congenital AMKL. At birth, the infant had hepatosplenomegaly and the peripheral blood count revealed anemia, thrombopenia and leukocytosis, with 28% blasts. Immunophenotyping demonstrated blasts positive for CD34, CD61 and CD42b. Karyotyping of these blasts (R-banding) showed a hitherto unreported chromosomal translocation, t(1;7;22)(p13;q21;q13), a 3-way variant of the t(1;22)(p13;q13) variant. Fluorescent in situ hybridization analysis confirmed the presence of the RBM15-MKL1 fusion gene.
Copyright: © Messiaen et al.

  • Cancer Research

Human innate lymphoid cell activation by adenoviruses is modified by host defense proteins and neutralizing antibodies.

In Frontiers in Immunology on 25 October 2022 by Paris, O., Mennechet, F. J. D., et al.

Innate lymphoid cells (ILCs), the complements of diverse CD4 T helper cells, help maintain tissue homeostasis by providing a link between innate and adaptive immune responses. While pioneering studies over the last decade have advanced our understanding how ILCs influence adaptive immune responses to pathogens, far less is known about whether the adaptive immune response feeds back into an ILC response. In this study, we isolated ILCs from blood of healthy donors, fine-tuned culture conditions, and then directly challenged them with human adenoviruses (HAdVs), with HAdVs and host defense proteins (HDPs) or neutralizing antibodies (NAbs), to mimic interactions in a host with pre-existing immunity. Additionally, we developed an ex vivo approach to identify how bystander ILCs respond to the uptake of HAdVs ± neutralizing antibodies by monocyte-derived dendritic cells. We show that ILCs take up HAdVs, which induces phenotypic maturation and cytokine secretion. Moreover, NAbs and HDPs complexes modified the cytokine profile generated by ILCs, consistent with a feedback loop for host antiviral responses and potential to impact adenovirus-based vaccine efficacy.
Copyright © 2022 Paris, Mennechet and Kremer.

  • FC/FACS
  • Immunology and Microbiology

Human innate lymphoid cell activation by adenoviruses is modified by host defence proteins and neutralizing antibodies

Preprint on BioRxiv : the Preprint Server for Biology on 16 June 2022 by Paris, O., Mennechet, F. J., et al.

Innate lymphoid cells (ILCs), the complements of diverse CD4 T helper cells, help maintain tissue homeostasis by providing a link between innate and adaptive immune responses. While pioneering studies over the last decade have advanced our understanding how ILCs influence adaptive immune responses to pathogens, far less is known about whether the adaptive immune response feeds back into an ILC response. In this study, we isolated ILCs from blood of healthy donors, fine-tuned culture conditions, and then directly challenged them with human adenoviruses (HAdVs), with HAdVs and host defence proteins (HDPs) or neutralizing antibodies (NAbs), to mimic interactions in a host with pre-existing immunity. Additionally, we developed an ex vivo approach to identify how bystander ILCs respond to the uptake of HAdVs ± neutralizing antibodies by monocyte-derived dendritic cells. We show that ILCs take up HAdVs, which induces phenotypic maturation and cytokine secretion. Moreover, NAbs and HDPs complexes modified the cytokine profile generated by ILCs, consistent with a feedback loop for host antiviral responses and potential to impact adenovirus-based vaccine efficacy. h4>Author Summary/h4> Several studies have shown the importance of innate lymphoid cells (ILCs) both from an immune and physiological point of view, in particular for their role in the maintenance of tissue integrity, pathogens clearance, or in the establishment of immune tolerance. Our study focuses on the role of ILCs during direct challenge with prototype vaccines based on human adenoviruses (HAdVs) ± host defence proteins (HDPs) or neutralizing antibodies (NAbs) to mimic interactions in a host with pre-existing immunity. In parallel, through an ex vivo approach we observe how bystander ILCs respond to the uptake of HAdVs ± NAbs by monocyte-derived dendritic cells. We show that ILCs take up HAdVs, which induces pro- inflammatory and antiviral responses through phenotypic maturation and cytokine secretion. Moreover, HAdV-NAb and HAdV-HDP complexes modified the cytokine profile generated by ILCs, consistent with a feedback loop for host antiviral responses and potential to impact HAdV vaccine efficacy.

  • Homo sapiens (Human)
View this product on CiteAb