Product Citations: 6

Mesenchymal stem/stromal cells (MSCs) represent a promising cell source for research and therapeutic applications, but their restricted ex vivo propagation capabilities limit putative applications. Substantial self-renewing of stem cells can be achieved by reprogramming cells into induced pluripotent stem cells (iPSCs) that can be easily expanded as undifferentiated cells even in mass culture. Here, we investigated a differentiation protocol enabling the generation and selection of human iPSC-derived MSCs exhibiting relevant surface marker expression profiles (CD105 and CD73) and functional characteristics. We generated such iPSC-MSCs from fibroblasts and bone marrow MSCs utilizing two different reprogramming constructs. All such iPSC-MSCs exhibited the characteristics of normal bone marrow-derived (BM) MSCs. In direct comparison to BM-MSCs our iPSC-MSCs exhibited a similar surface marker expression profile but shorter doubling times without reaching senescence within 20 passages. Considering functional capabilities, iPSC-MSCs provided supportive feeder layer for CD34(+) hematopoietic stem cells' self-renewal and colony forming capacities. Furthermore, iPSC-MSCs gained immunomodulatory function to suppress CD4(+) cell proliferation, reduce proinflammatory cytokines in mixed lymphocyte reaction, and increase regulatory CD4(+)/CD69(+)/CD25(+) T-lymphocyte population. In conclusion, we generated fully functional MSCs from various iPSC lines irrespective of their starting cell source or reprogramming factor composition and we suggest that such iPSC-MSCs allow repetitive cell applications for advanced therapeutic approaches.

  • Immunology and Microbiology
  • Stem Cells and Developmental Biology

Vpu is the main determinant for tetraspanin downregulation in HIV-1-infected cells.

In Journal of Virology on 1 March 2015 by Lambelé, M., Koppensteiner, H., et al.

Tetraspanins constitute a family of cellular proteins that organize various membrane-based processes. Several members of this family, including CD81, are actively recruited by HIV-1 Gag to viral assembly and release sites. Despite their enrichment at viral exit sites, the overall levels of tetraspanins are decreased in HIV-1-infected cells. Here, we identify Vpu as the main viral determinant for tetraspanin downregulation. We also show that reduction of CD81 levels by Vpu is not a by-product of CD4 or BST-2/tetherin elimination from the surfaces of infected cells and likely occurs through an interaction between Vpu and CD81. Finally, we document that Vpu-mediated downregulation of CD81 from the surfaces of infected T cells can contribute to preserving the infectiousness of viral particles, thus revealing a novel Vpu function that promotes virus propagation by modulating the host cell environment.
The HIV-1 accessory protein Vpu has previously been shown to downregulate various host cell factors, thus helping the virus to overcome restriction barriers, evade immune attack, and maintain the infectivity of viral particles. Our study identifies tetraspanins as an additional group of host factors whose expression at the surfaces of infected cells is lowered by Vpu. While the downregulation of these integral membrane proteins, including CD81 and CD82, likely affects more than one function of HIV-1-infected cells, we document that Vpu-mediated lowering of CD81 levels in viral particles can be critical to maintaining their infectiousness.
Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  • Immunology and Microbiology

Intermediate DNA methylation is a conserved signature of genome regulation.

In Nature Communications on 18 February 2015 by Elliott, G., Hong, C., et al.

The role of intermediate methylation states in DNA is unclear. Here, to comprehensively identify regions of intermediate methylation and their quantitative relationship with gene activity, we apply integrative and comparative epigenomics to 25 human primary cell and tissue samples. We report 18,452 intermediate methylation regions located near 36% of genes and enriched at enhancers, exons and DNase I hypersensitivity sites. Intermediate methylation regions average 57% methylation, are predominantly allele-independent and are conserved across individuals and between mouse and human, suggesting a conserved function. These regions have an intermediate level of active chromatin marks and their associated genes have intermediate transcriptional activity. Exonic intermediate methylation correlates with exon inclusion at a level between that of fully methylated and unmethylated exons, highlighting gene context-dependent functions. We conclude that intermediate DNA methylation is a conserved signature of gene regulation and exon usage.

  • FC/FACS
  • Homo sapiens (Human)
  • Genetics

Micropatterned aptasensors for continuous monitoring of cytokine release from human leukocytes.

In Analytical Chemistry on 1 November 2011 by Liu, Y., Yan, J., et al.

We report the development of a microdevice for detecting local interferon gamma (IFN-γ) release from primary human leukocytes in real time. Our microdevice makes use of miniature aptamer-modified electrodes integrated with microfluidics to monitor cellular production of IFN-γ. The aptamer species consists of a DNA hairpin molecule with thiol groups on the 3'-end for self-assembly onto Au electrodes. A redox reporter is covalently attached at the 5'-end for electrochemical sensing. This aptasensor has excellent sensitivity for IFN-γ (<60 pM detection limit) and responds to the target analyte in real time without additional washing or labeling steps. Aptamer-functionalized electrode arrays are fabricated on glass slides containing poly(ethylene glycol) (PEG) hydrogel patterns designed to expose glass regions adjacent to electrodes while protecting the remainder of the surface from nonspecific adsorption. The micropatterned substrates are integrated with PDMS microfluidic channels and incubated with T-cell-specific antibodies (Ab) (anti-CD4). Upon injection of blood, leukocytes are bound to Ab-modified glass regions in proximity to aptasensors. Cytokine release from captured cells is triggered by mitogenic activation and detected at the aptamer-modified electrodes using square wave voltammetry (SWV). The IFN-γ signal is monitored in real time with signal appearing as early as 15 min poststimulation from as few as 90 T cells. The observed IFN-γ release profiles are used to calculate an initial IFN-γ production rate of 0.0079 pg cell(-1) h(-1) upon activation. The work described here represents an important step toward development of aptasensors for immune cell analysis and blood-based diagnostics.

  • Chemistry

Detecting cytokine release from single T-cells.

In Analytical Chemistry on 1 October 2009 by Zhu, H., Stybayeva, G., et al.

The cytokine production by leukocytes correlates with body's ability to mount an immune response and therefore has high diagnostic value. In the present study we employed microfabricated surfaces to capture T-cells from minimally processed human blood, arrange these cells into a single cell array, and then detect interferon (IFN)-gamma released from individual cells. The fabrication of cell capture surfaces started with coating a silane-modified glass slide with a uniform layer of poly(ethylene glycol) (PEG) hydrogel. The hydrogel-coated slide was lyophilized and then incubated with a mixture of monoclonal anti-IFN-gamma and anti-CD4 antibodies (Abs). To define sites for single cell attachment, PEG hydrogel microwells (20 microm diameter) were photolithographically patterned on top of the Ab-containing hydrogel layer. This micropatterning process resulted in fabrication of PEG hydrogel microwells with Ab-decorated bottom and nonfouling walls. To minimize the blood volume requirement and to precisely define shear stress conditions, the engineered surface was enclosed inside a PDMS-based microfluidic device. Introduction of red blood cell (RBC) depleted whole human blood followed by controlled washing led to the isolation of individual CD4 T-cells within PEG microwells. Mitogenic activation and immunofluorescent staining performed inside the microfluidic chamber revealed IFN-gamma cytokine signal colocalized with specific T-cells. The device and process presented here will be expanded in the future to enable multiparametric functional analysis of immune cells organized into high density single cell arrays.

  • Chemistry
  • Immunology and Microbiology
View this product on CiteAb