Product Citations: 22

Effect of Bacille Calmette-Guérin vaccination on immune responses to SARS-CoV-2 and COVID-19 vaccination.

In Clinical Translational Immunology on 28 January 2025 by Messina, N. L., Germano, S., et al.

Bacille Calmette-Guérin (BCG) vaccination has off-target effects on disease risk for unrelated infections and immune responses to vaccines. This study aimed to determine the immunomodulatory effects of BCG vaccination on immune responses to vaccines against SARS-CoV-2.
Blood samples, from a subset of 275 SARS-CoV-2-naïve healthcare workers randomised to BCG vaccination (BCG group) or no BCG vaccination (Control group) in the BRACE trial, were collected before and 28 days after the primary course (two doses) of ChAdOx1-S (Oxford-AstraZeneca) or BNT162b2 (Pfizer-BioNTech) vaccination. SARS-CoV-2-specific antibodies were measured using ELISA and multiplex bead array, whole blood cytokine responses to γ-irradiated SARS-CoV-2 (iSARS) stimulation were measured by multiplex bead array, and SARS-CoV-2-specific T-cell responses were measured by activation-induced marker and intracellular cytokine staining assays.
After randomisation (mean 11 months) but prior to COVID-19 vaccination, the BCG group had lower cytokine responses to iSARS stimulation than the Control group. After two doses of ChAdOx1-S, differences in iSARS-induced cytokine responses between the BCG group and Control group were found for three cytokines (CTACK, TRAIL and VEGF). No differences were found between the groups after BNT162b2 vaccination. There were also no differences between the BCG and Control groups in COVID-19 vaccine-induced antigen-specific antibody responses, T-cell activation or T-cell cytokine production.
BCG vaccination induced a broad and persistent reduction in ex vivo cytokine responses to SARS-CoV-2. Following COVID-19 vaccination, this effect was abrogated, and BCG vaccination did not influence adaptive immune responses to COVID-19 vaccine antigens.
© 2025 The Author(s). Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of Australian and New Zealand Society for Immunology, Inc.

  • COVID-19
  • Immunology and Microbiology

Dysregulated Immunity to Clostridioides difficile in IBD Patients Without a History of Recognized Infection.

In Inflammatory Bowel Diseases on 2 May 2024 by Cook, L., Wong, M. Q., et al.

Clostridioides difficile is a toxin-secreting bacteria that is an urgent antimicrobial resistance threat, with approximately 25% of patients developing recurrent infections. Inflammatory bowel disease (IBD) patients are at increased risk of severe, recurrent C. difficile infection.
To investigate a role for C. difficile infection in IBD pathogenesis, we collected peripheral blood and stool from 20 each of ulcerative colitis patients, Crohn's disease patients, and healthy control subjects. We used a flow cytometric activation induced marker assay to quantify C. difficile toxin-specific CD4+ T cells and 16S ribosomal RNA sequencing to study microbiome diversity.
We found IBD patients had significantly increased levels of C. difficile toxin B-specific CD4+ T cells, but not immunoglobulin G or immunoglobulin A, compared with healthy control subjects. Within antigen-specific CD4+ T cells, T helper type 17 cells and cells expressing the gut homing receptor integrin β7 were reduced compared with healthy control subjects, similar to our previous study of non-IBD patients with recurrent C. difficile infection. Stool microbiome analysis revealed that gut homing, toxin-specific CD4+ T cells negatively associated with microbial diversity and, along with T helper type 17 cells, positively associated with bacteria enriched in healthy control subjects.
These data suggest that IBD patients, potentially due to underlying intestinal dysbiosis, experience undiagnosed C. difficile infections that result in impaired toxin-specific immunity. This may contribute to the development of inflammatory T cell responses toward commensal bacteria and provide a rationale for C. difficile testing in IBD patients.
© 2023 Crohn’s & Colitis Foundation. Published by Oxford University Press on behalf of Crohn’s & Colitis Foundation.

  • Immunology and Microbiology

Improvement of immune dysregulation in individuals with long COVID at 24-months following SARS-CoV-2 infection.

In Nature Communications on 17 April 2024 by Phetsouphanh, C., Jacka, B., et al.

This study investigates the humoral and cellular immune responses and health-related quality of life measures in individuals with mild to moderate long COVID (LC) compared to age and gender matched recovered COVID-19 controls (MC) over 24 months. LC participants show elevated nucleocapsid IgG levels at 3 months, and higher neutralizing capacity up to 8 months post-infection. Increased spike-specific and nucleocapsid-specific CD4+ T cells, PD-1, and TIM-3 expression on CD4+ and CD8+ T cells were observed at 3 and 8 months, but these differences do not persist at 24 months. Some LC participants had detectable IFN-γ and IFN-β, that was attributed to reinfection and antigen re-exposure. Single-cell RNA sequencing at the 24 month timepoint shows similar immune cell proportions and reconstitution of naïve T and B cell subsets in LC and MC. No significant differences in exhaustion scores or antigen-specific T cell clones are observed. These findings suggest resolution of immune activation in LC and return to comparable immune responses between LC and MC over time. Improvement in self-reported health-related quality of life at 24 months was also evident in the majority of LC (62%). PTX3, CRP levels and platelet count are associated with improvements in health-related quality of life.
© 2024. The Author(s).

  • COVID-19
  • Immunology and Microbiology

Conjugation of HIV-1 envelope to hepatitis B surface antigen alters vaccine responses in rhesus macaques.

In NPJ Vaccines on 24 November 2023 by Nettere, D., Unnithan, S., et al.

An effective HIV-1 vaccine remains a critical unmet need for ending the AIDS epidemic. Vaccine trials conducted to date have suggested the need to increase the durability and functionality of vaccine-elicited antibodies to improve efficacy. We hypothesized that a conjugate vaccine based on the learned response to immunization with hepatitis B virus could be utilized to expand T cell help and improve antibody production against HIV-1. To test this, we developed an innovative conjugate vaccine regimen that used a modified vaccinia virus Ankara (MVA) co-expressing HIV-1 envelope (Env) and the hepatitis B virus surface antigen (HBsAg) as a prime, followed by two Env-HBsAg conjugate protein boosts. We compared the immunogenicity of this conjugate regimen to matched HIV-1 Env-only vaccines in two groups of 5 juvenile rhesus macaques previously immunized with hepatitis B vaccines in infancy. We found expansion of both HIV-1 and HBsAg-specific circulating T follicular helper cells and elevated serum levels of CXCL13, a marker for germinal center activity, after boosting with HBsAg-Env conjugate antigens in comparison to Env alone. The conjugate vaccine elicited higher levels of antibodies binding to select HIV Env antigens, but we did not observe significant improvement in antibody functionality, durability, maturation, or B cell clonal expansion. These data suggests that conjugate vaccination can engage both HIV-1 Env and HBsAg specific T cell help and modify antibody responses at early time points, but more research is needed to understand how to leverage this strategy to improve the durability and efficacy of next-generation HIV vaccines.
© 2023. The Author(s).

  • Immunology and Microbiology

High-risk groups, including Indigenous people, are at risk of severe COVID-19. Here we found that Australian First Nations peoples elicit effective immune responses to COVID-19 BNT162b2 vaccination, including neutralizing antibodies, receptor-binding domain (RBD) antibodies, SARS-CoV-2 spike-specific B cells, and CD4+ and CD8+ T cells. In First Nations participants, RBD IgG antibody titers were correlated with body mass index and negatively correlated with age. Reduced RBD antibodies, spike-specific B cells and follicular helper T cells were found in vaccinated participants with chronic conditions (diabetes, renal disease) and were strongly associated with altered glycosylation of IgG and increased interleukin-18 levels in the plasma. These immune perturbations were also found in non-Indigenous people with comorbidities, indicating that they were related to comorbidities rather than ethnicity. However, our study is of a great importance to First Nations peoples who have disproportionate rates of chronic comorbidities and provides evidence of robust immune responses after COVID-19 vaccination in Indigenous people.
© 2023. The Author(s).

  • COVID-19
  • Immunology and Microbiology
View this product on CiteAb