Product Citations: 16

A multi-kinase inhibitor screen identifies inhibitors preserving stem-cell-like chimeric antigen receptor T cells.

In Nature Immunology on 1 February 2025 by Song, F., Tsahouridis, O., et al.

Chimeric antigen receptor T cells (CAR T cells) with T stem (TSCM) cell-like phenotypic characteristics promote sustained antitumor effects. We performed an unbiased and automated high-throughput screen of a kinase-focused compound set to identify kinase inhibitors (KIs) that preserve human TSCM cell-like CAR T cells. We identified three KIs, UNC10225387B, UNC10225263A and UNC10112761A, that combined in vitro increased the frequency of CD45RA+CCR7+TCF1hi TSCM cell-like CAR T cells from both healthy donors and patients with cancer. KI-treated CAR T cells showed enhanced antitumor effects both in vitro and in vivo in mouse tumor models. The KI cocktail maintains TSCM cell-like phenotype preferentially in CAR T cells originating from naive T cells and causes transcriptomic changes without arresting T cell activation or modulating the chromatin organization. Specific kinases, ITK, ADCK3, MAP3K4 and CDK13, targeted by the KI cocktail in a dose-dependent manner are directly associated with the preservation of TSCM cell-like CAR T cells. Knockdown of these kinases individually or in combination enriches for TSCM cell-like CAR T cells, but only CAR T cells generated in the presence of the KI cocktail show robust expansion and differentiation on stimulation with tumor cells. Overall, transient pharmacological inhibition of strategically targeted kinases maintains stem-like features in CAR T cells and improves their antitumor activity.
© 2025. The Author(s).

  • Immunology and Microbiology
  • Stem Cells and Developmental Biology

Visceral leishmaniasis is a neglected tropical disease affecting 12 million people annually. Even in the second decade of the 21st century, it has remained without an effective vaccine for human use. In the current study, we designed three multiepitope vaccine candidates by the selection of multiple IFN-γ inducing MHC-I and MHC-II binder T-cell specific epitopes from three previously identified antigen genes of Leishmania donovani from our lab by an immuno-informatic approach using IFNepitope, the Immune Epitope Database (IEDB) T cell epitope identification tools, NET-MHC-1, and NET MHC-2 webservers. We tested the protective potential of these three multiepitope proteins as a vaccine in a hamster model of visceral leishmaniasis. The immunization data revealed that the vaccine candidates induced a very high level of Th1 biased protective immune response in-vivo in a hamster model of experimental visceral leishmaniasis, with one of the candidates inducing a near-sterile immunity. The vaccinated animals displayed highly activated monocyte macrophages with the capability of clearing intracellular parasites due to increased respiratory burst. Additionally, these proteins induced activation of polyfunctional T cells secreting INF-γ, TNF-α, and IL-2 in an ex-vivo stimulation of human peripheral blood mononuclear cells, further supporting the protective nature of the designed candidates.

  • Immunology and Microbiology
  • Veterinary Research

A controlled human Schistosoma mansoni infection model to advance novel drugs, vaccines and diagnostics.

In Nature Medicine on 1 March 2020 by Langenberg, M. C. C., Hoogerwerf, M. A., et al.

Schistosomiasis treatment relies on the use of a single drug, praziquantel, which is insufficient to control transmission in highly endemic areas1. Novel medicines and vaccines are urgently needed2,3. An experimental human model for schistosomiasis could accelerate the development of these products. We performed a dose-escalating clinical safety trial in 17 volunteers with male Schistosoma mansoni cercariae, which do not produce eggs (clinicaltrials.gov NCT02755324), at the Leiden University Medical Center, the Netherlands. The primary endpoints were adverse events and infectivity. We found a dose-related increase in adverse events related to acute schistosomiasis syndrome, which occurred in 9 of 17 volunteers. Overall, 5 volunteers (all 3 of the high dose group and 2 of 11 of the medium dose group) reported severe adverse events. Worm-derived circulating anodic antigen, the biomarker of the primary infection endpoint, peaked in 82% of volunteers at 3-10 weeks following exposure. All volunteers showed IgM and IgG1 seroconversion and worm-specific cytokine production by CD4+ T cells. All volunteers were cured with praziquantel provided at 12 weeks after exposure. Infection with 20 Schistosoma mansoni cercariae led to severe adverse events in 18% of volunteers and high infection rates. This infection model paves the way for fast-track product development for treatment and prevention of schistosomiasis.

  • Immunology and Microbiology

LXR alters CD4sup>+/sup> T cell function through direct regulation of glycosphingolipid synthesis

Preprint on BioRxiv : the Preprint Server for Biology on 31 July 2019 by Waddington, K. E., Robinson, G. A., et al.

The liver X receptor (LXR) is a key transcriptional regulator of cholesterol, fatty acid, and phospholipid metabolism. Dynamic remodeling of immunometabolic pathways, including lipid metabolism, is a crucial step in T cell activation. Here we explored the role of LXR-regulated metabolic processes in primary human CD4 + T cells, and their role in controlling plasma membrane lipids (glycosphingolipids and cholesterol) which strongly influence T cell immune signaling and function. Crucially, we identified the glycosphingolipid biosynthesis enzyme glucosylceramide synthase (UGCG) as a direct transcriptional LXR target. LXR activation by agonist GW3965 or endogenous oxysterol ligands significantly altered the glycosphingolipid:cholesterol balance in the plasma membrane by increasing glycosphingolipid levels and reducing cholesterol. Consequently, LXR activation lowered plasma membrane lipid order (stability), and an LXR antagonist could block this effect. LXR stimulation also reduced lipid order at the immune synapse and accelerated activation of proximal T cell signaling molecules. Ultimately, LXR activation dampened pro-inflammatory T cell function. Finally, compared to responder T cells, regulatory T cells had a distinct pattern of LXR-target gene expression corresponding to reduced lipid order. This suggests LXR-driven lipid metabolism could contribute to functional specialization of these T cell subsets. Overall, we report a novel mode of action for LXR in T cells involving the regulation of glycosphingolipid and cholesterol metabolism, and demonstrate its relevance in modulating T cell function.

  • Immunology and Microbiology

CD161 contributes to prenatal immune suppression of IFNγ-producing PLZF+ T cells.

In The Journal of Clinical Investigation on 30 May 2019 by Halkias, J., Rackaityte, E., et al.

While the human fetal immune system defaults to a program of tolerance, there is concurrent need for protective immunity to meet the antigenic challenges encountered after birth. Activation of T cells in utero is associated with the fetal inflammatory response with broad implications for the health of the fetus and of the pregnancy. However, the characteristics of the fetal effector T cells that contribute to this process are largely unknown.
We analyzed primary human fetal lymphoid and mucosal tissues and performed phenotypic, functional, and transcriptional analysis to identify T cells with pro-inflammatory potential. The frequency and function of fetal-specific effector T cells was assessed in the cord blood of infants with localized and systemic inflammatory pathologies and compared to healthy term controls.
We identified a transcriptionally distinct population of CD4+ T cells characterized by expression of the transcription factor Promyelocytic Leukemia Zinc Finger (PLZF). PLZF+ CD4+ T cells were specifically enriched in the fetal intestine, possessed an effector memory phenotype, and rapidly produced pro-inflammatory cytokines. Engagement of the C-type lectin CD161 on these cells inhibited TCR-dependent production of IFNγ in a fetal-specific manner. IFNγ-producing PLZF+ CD4+ T cells were enriched in the cord blood of infants with gastroschisis, a natural model of chronic inflammation originating from the intestine, as well as in preterm birth, suggesting these cells contribute to fetal systemic immune activation.
Our work reveals a fetal-specific program of protective immunity whose dysregulation is associated with fetal and neonatal inflammatory pathologies.

  • Immunology and Microbiology
View this product on CiteAb