Product Citations: 20

Profile of immunological biomarkers in Behcet's syndrome: a large-scale single-center real-world study.

In Clinical and Experimental Medicine on 28 August 2024 by Li, J., Sun, F., et al.

Behcet's syndrome (BS) is a vasculitis characterized by immune dysregulation. Biomarkers are valuable for assessing clinically atypical pathogenesis. We aimed to investigate the distribution of different biomarkers and their effects on the clinical features of patients with BS in a large-scale, real-world study. This is a retrospective, single-center study. In total, 502 patients diagnosed with BS were enrolled in this study. We analyzed the clinical features of this cohort and divided patients' symptoms into six categories, including mucocutaneous, articular, neurological, gastrointestinal, vascular, and ocular involvements. HLA-B51 cells, autoantibodies, and subsets of immune cells from the patients were tested. Pearson's correlation, Wilcoxon rank sum test and multivariate logistic regression were used for data analysis. Various autoantibodies were detected in the serum of 40.8% of patients with BS. The positivity rate of anti-endothelial cell antibodies (AECA) was the highest among autoantibodies and was found in 23.5% (118/502) of patients with BS. The positivity rate of HLA-B51 in patients with BS was 27.1%. Tumor necrosis factor (TNF)-α, IL-2, and IL-4 producing CD4+ T cells were positively correlated with the gastrointestinal BS. Increased IL-4+CD4+ T cell was a risk factor for gastrointestinal BS (P = 0.006, Overall rate [OR] = 2.491, 95% Confidence interval [CI]: [1.317, 5.100]). Various autoantibodies can be detected in patients with BS. HLA-B51 and AECA are the most common biomarkers. Increased IL-4+ CD4+ T cell was a risk factor for gastrointestinal involvement in BS.
© 2024. The Author(s).

  • Immunology and Microbiology

Initial COVID-19 severity influenced by SARS-CoV-2-specific T cells imprints T-cell memory and inversely affects reinfection.

In Signal Transduction and Targeted Therapy on 29 May 2024 by Yang, G., Cao, J., et al.

The immunoprotective components control COVID-19 disease severity, as well as long-term adaptive immunity maintenance and subsequent reinfection risk discrepancies across initial COVID-19 severity, remain unclarified. Here, we longitudinally analyzed SARS-CoV-2-specific immune effectors during the acute infection and convalescent phases of 165 patients with COVID-19 categorized by severity. We found that early and robust SARS-CoV-2-specific CD4+ and CD8+ T cell responses ameliorate disease progression and shortened hospital stay, while delayed and attenuated virus-specific CD8+ T cell responses are prominent severe COVID-19 features. Delayed antiviral antibody generation rather than titer level associates with severe outcomes. Conversely, initial COVID-19 severity imprints the long-term maintenance of SARS-CoV-2-specific adaptive immunity, demonstrating that severe convalescents exhibited more sustained virus-specific antibodies and memory T cell responses compared to mild/moderate counterparts. Moreover, initial COVID-19 severity inversely correlates with SARS-CoV-2 reinfection risk. Overall, our study unravels the complicated interaction between temporal characteristics of virus-specific T cell responses and COVID-19 severity to guide future SARS-CoV-2 wave management.
© 2024. The Author(s).

  • COVID-19
  • Immunology and Microbiology

Newborn and child-like molecular signatures in older adults stem from TCR shifts across human lifespan.

In Nature Immunology on 1 November 2023 by Van de Sandt, C., Nguyen, T. H. O., et al.

CD8+ T cells provide robust antiviral immunity, but how epitope-specific T cells evolve across the human lifespan is unclear. Here we defined CD8+ T cell immunity directed at the prominent influenza epitope HLA-A*02:01-M158-66 (A2/M158) across four age groups at phenotypic, transcriptomic, clonal and functional levels. We identify a linear differentiation trajectory from newborns to children then adults, followed by divergence and a clonal reset in older adults. Gene profiles in older adults closely resemble those of newborns and children, despite being clonally distinct. Only child-derived and adult-derived A2/M158+CD8+ T cells had the potential to differentiate into highly cytotoxic epitope-specific CD8+ T cells, which was linked to highly functional public T cell receptor (TCR)αβ signatures. Suboptimal TCRαβ signatures in older adults led to less proliferation, polyfunctionality, avidity and recognition of peptide mutants, although displayed no signs of exhaustion. These data suggest that priming T cells at different stages of life might greatly affect CD8+ T cell responses toward viral infections.
© 2023. The Author(s).

  • Homo sapiens (Human)
  • Immunology and Microbiology

Anti-CD40 Antibody Fused to CD40 Ligand Is a Superagonist Platform for Adjuvant Intrinsic DC-Targeting Vaccines.

In Frontiers in Immunology on 1 February 2022 by Ceglia, V., Zurawski, S., et al.

CD40 is a potent activating receptor expressed on antigen-presenting cells (APCs) of the immune system. CD40 regulates many aspects of B and T cell immunity via interaction with CD40L expressed on activated T cells. Targeting antigens to CD40 via agonistic anti-CD40 antibody fusions promotes both humoral and cellular immunity, but current anti-CD40 antibody-antigen vaccine prototypes require co-adjuvant administration for significant in vivo efficacy. This may be a consequence of dulling of anti-CD40 agonist activity via antigen fusion. We previously demonstrated that direct fusion of CD40L to anti-CD40 antibodies confers superagonist properties. Here we show that anti-CD40-CD40L-antigen fusion constructs retain strong agonist activity, particularly for activation of dendritic cells (DCs). Therefore, we tested anti-CD40-CD40L antibody fused to antigens for eliciting immune responses in vitro and in vivo. In PBMC cultures from HIV-1-infected donors, anti-CD40-CD40L fused to HIV-1 antigens preferentially expanded HIV-1-specific CD8+ T cells versus CD4+ T cells compared to analogous anti-CD40-antigen constructs. In normal donors, anti-CD40-CD40L-mediated delivery of Influenza M1 protein elicited M1-specific T cell expansion at lower doses compared to anti-CD40-mediated delivery. Also, on human myeloid-derived dendritic cells, anti-CD40-CD40L-melanoma gp100 peptide induced more sustained Class I antigen presentation compared to anti-CD40-gp100 peptide. In human CD40 transgenic mice, anti-CD40-CD40L-HIV-1 gp140 administered without adjuvant elicited superior antibody responses compared to anti-CD40-gp140 antigen without fused CD40L. In human CD40 mice, compared to the anti-CD40 vehicle, anti-CD40-CD40L delivery of Eα 52-68 peptide elicited proliferating of TCR I-Eα 52-68 CD4+ T cells producing cytokine IFNγ. Also, compared to controls, only anti-CD40-CD40L-Cyclin D1 vaccination of human CD40 mice reduced implanted EO771.LMB breast tumor cell growth. These data demonstrate that human CD40-CD40L antibody fused to antigens maintains highly agonistic activity and generates immune responses distinct from existing low agonist anti-CD40 targeting formats. These advantages were in vitro skewing responses towards CD8+ T cells, increased efficacy at low doses, and longevity of MHC Class I peptide display; and in mouse models, a more robust humoral response, more activated CD4+ T cells, and control of tumor growth. Thus, the anti-CD40-CD40L format offers an alternate DC-targeting platform with unique properties, including intrinsic adjuvant activity.
Copyright © 2022 Ceglia, Zurawski, Montes, Kroll, Bouteau, Wang, Ellis, Igyártó, Lévy and Zurawski.

  • FC/FACS
  • Immunology and Microbiology

A Framework to Identify Antigen-Expanded T Cell Receptor Clusters Within Complex Repertoires.

In Frontiers in Immunology on 18 December 2021 by Ceglia, V., Kelley, E. J., et al.

Common approaches for monitoring T cell responses are limited in their multiplexity and sensitivity. In contrast, deep sequencing of the T Cell Receptor (TCR) repertoire provides a global view that is limited only in terms of theoretical sensitivity due to the depth of available sampling; however, the assignment of antigen specificities within TCR repertoires has become a bottleneck. This study combines antigen-driven expansion, deep TCR sequencing, and a novel analysis framework to show that homologous 'Clusters of Expanded TCRs (CETs)' can be confidently identified without cell isolation, and assigned to antigen against a background of non-specific clones. We show that clonotypes within each CET respond to the same epitope, and that protein antigens stimulate multiple CETs reactive to constituent peptides. Finally, we demonstrate the personalized assignment of antigen-specificity to rare clones within fully-diverse uncultured repertoires. The method presented here may be used to monitor T cell responses to vaccination and immunotherapy with high fidelity.
Copyright © 2021 Ceglia, Kelley, Boyle, Zurawski, Mead, Harms, Blanck, Flamar, Kirschman, Ogongo, Ernst, Levy, Zurawski and Altin.

  • Immunology and Microbiology
View this product on CiteAb