Product Citations: 7

Trastuzumab deruxtecan (T-DXd), a HER2-targeting antibody-drug conjugate with a topoisomerase I inhibitor deruxtecan (DXd), exhibits an excellent anti-tumor effect in previously treated HER2-positive tumors. A recent study demonstrated that T-DXd not only suppressed tumor growth but also enhanced anti-tumor immunity through increasing the number of tumor-infiltrating CD8+ T cells and enhancement of major-histocompatibility-complex class I expression on tumor cells in a mouse model. However, the effect of T-DXd on anti-tumor immune responses in human cancers is largely unknown. We investigated the effect of T-DXd on the expression of HLA class I and CXCL9/10/11, T-cell chemoattractants, in HER2-positive human gastric cancer (GC) cells. We found that T-DXd significantly inhibited GC cell proliferation in a HER2-dependent manner, while it slightly increased the expression of HLA class I in HER2-positive GC cells. Moreover, we revealed that T-DXd significantly induced mRNA expression of CXCL9/10/11 in HER2-positive GC cells. T-DXd-triggered up-regulation of these chemokines was mediated through the activation of DNA damage signaling pathways. These results suggest that T-DXd triggers anti-tumor immune responses at least in part through induction of the expression of HLA class I and CXCL9/10/11 on HER2-positive GC cells, resulting in the enhancement of anti-tumor immunity in human GC.
© 2021. The Author(s).

  • Homo sapiens (Human)
  • Cancer Research

Stresses associated with disease may pathologically remodel the proteome by both increasing interaction strength and altering interaction partners, resulting in proteome-wide connectivity dysfunctions. Chaperones play an important role in these alterations, but how these changes are executed remains largely unknown. Our study unveils a specific N-glycosylation pattern used by a chaperone, Glucose-regulated protein 94 (GRP94), to alter its conformational fitness and stabilize a state most permissive for stable interactions with proteins at the plasma membrane. This "protein assembly mutation' remodels protein networks and properties of the cell. We show in cells, human specimens, and mouse xenografts that proteome connectivity is restorable by inhibition of the N-glycosylated GRP94 variant. In summary, we provide biochemical evidence for stressor-induced chaperone-mediated protein mis-assemblies and demonstrate how these alterations are actionable in disease.
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.

[Fam-] trastuzumab deruxtecan (DS-8201a) is a HER2 (ERBB2)-targeting antibody-drug conjugate, composed of a HER2-targeting antibody and a topoisomerase I inhibitor, exatecan derivative, that has antitumor effects in preclinical xenograft models and clinical trials. Recently, [fam-] trastuzumab deruxtecan was reported to enhance antitumor immunity and was beneficial in combination with an anti-PD-1 antibody in a mouse model. In this study, the antitumor effect of [fam-] trastuzumab deruxtecan in combination with an anti-CTLA-4 antibody was evaluated. [Fam-] trastuzumab deruxtecan monotherapy had antitumor activity in an immunocompetent mouse model with EMT6 human HER2-expressing mouse breast cancer cells (EMT6-hHER2). [Fam-] trastuzumab deruxtecan in combination with the anti-CTLA-4 antibody induced more potent antitumor activity than that by monotherapy with either agent. The combination therapy increased tumor-infiltrating CD4+ and CD8+ T cells in vivo. Mechanistically, cured mice with treatment of [fam-] trastuzumab deruxtecan and an anti-CTLA-4 antibody completely rejected EMT6-mock cells similar to EMT6-hHER2 cells, and splenocytes from the cured mice responded to both EMT6-hHER2 and EMT6-mock cells as measured by interferon-gamma release. Taken together, these results indicate that antitumor immunity is induced by [fam-] trastuzumab deruxtecan and is facilitated in combination with anti-CTLA-4 antibody.

  • FC/FACS
  • Immunology and Microbiology

Exosomes are extracellular vesicles that mediate cell-to-cell communication by transferring biological cargo, such as DNA, RNA and proteins. Through genetic engineering of exosome-producing cells or manipulation of purified exosomes, it is possible to load exosomes with therapeutic molecules and target them to specific cells via the display of targeting moieties on their surface. This provides an opportunity to exploit a naturally-occurring biological process for therapeutic purposes. In this study, we explored the potential of single chain variable fragments (scFv) as targeting domains to achieve delivery of exosomes to cells expressing a cognate antigen. We generated exosomes targeting the Her2 receptor and, by varying the affinity of the scFvs and the Her2 expression level on recipient cells, we determined that both a high-affinity anti-Her2-scFv (KD≤ 1 nM) and cells expressing a high level (≥106 copies per cell) of Her2 were optimally required to enable selective uptake. We also demonstrate that targeting exosomes to cells via a specific cell surface receptor can alter their intracellular trafficking route, providing opportunities to influence the efficiency of delivery and fate of intracellular cargo. These experiments provide solid data to support the wider application of exosomes displaying antibody fragments as vehicles for the targeted delivery of therapeutic molecules.

  • FC/FACS
  • Homo sapiens (Human)

A HER2-Targeting Antibody-Drug Conjugate, Trastuzumab Deruxtecan (DS-8201a), Enhances Antitumor Immunity in a Mouse Model.

In Molecular Cancer Therapeutics on 1 July 2018 by Iwata, T. N., Ishii, C., et al.

Trastuzumab deruxtecan (DS-8201a), a HER2-targeting antibody-drug conjugate with a topoisomerase I inhibitor exatecan derivative (DX-8951 derivative, DXd), has been reported to exert potent antitumor effects in xenograft mouse models and clinical trials. In this study, the immune system-activating ability of DS-8201a was assessed. DS-8201a significantly suppressed tumor growth in an immunocompetent mouse model with human HER2-expressing CT26.WT (CT26.WT-hHER2) cells. Cured immunocompetent mice rejected not only rechallenged CT26.WT-hHER2 cells, but also CT26.WT-mock cells. Splenocytes from the cured mice responded to both CT26.WT-hHER2 and CT26.WT-mock cells. Further analyses revealed that DXd upregulated CD86 expression on bone marrow-derived dendritic cells (DC) in vitro and that DS-8201a increased tumor-infiltrating DCs and upregulated their CD86 expression in vivo DS-8201a also increased tumor-infiltrating CD8+ T cells and enhanced PD-L1 and MHC class I expression on tumor cells. Furthermore, combination therapy with DS-8201a and anti-PD-1 antibody was more effective than either monotherapy. In conclusion, DS-8201a enhanced antitumor immunity, as evidenced by the increased expression of DC markers, augmented expression of MHC class I in tumor cells, and rejection of rechallenged tumor cells by adaptive immune cells, suggesting that DS-8201a enhanced tumor recognition by T cells. Furthermore, DS-8201a treatment benefited from combination with anti-PD-1 antibody, possibly due to increased T-cell activity and upregulated PD-L1 expression induced by DS-8201a. Mol Cancer Ther; 17(7); 1494-503. ©2018 AACR.
©2018 American Association for Cancer Research.

  • Cancer Research
  • Immunology and Microbiology
View this product on CiteAb