Product Citations: 6

Patients with concurrent acute myeloid leukemia (AML) and active pulmonary tuberculosis (TB) exhibit certain characteristics; cough, phlegm, fever, hemoptysis, weight loss and dyspnea are common symptoms of both diseases. These patients often cannot tolerate traditional intensive chemotherapy regimens, and finding the optimal timing in the treatment of both AML and active pulmonary TB is complex. Neglecting timely treatment can lead to serious complications and even fatal outcomes. The present paper reports two cases of patients with AML who were diagnosed with active pulmonary TB. The patients received intensive anti-TB treatment with isoniazid, rifampicin, pyrazinamide and ethambutol for 10-15 days. After three consecutive negative sputum smears, the patients in cases 1 and 2 were treated with a venetoclax, homoharringtonine and cytarabine regimen; and a venetoclax and azacitidine regimen for anti-AML therapy, respectively, as well as individualized anti-TB regimens of isoniazid, pyrazinamide, ethambutol and quinolone. Subsequently, both patients achieved complete remission of AML and their active TB was well controlled.
Copyright: © 2024 Ji et al.

  • Cancer Research
  • Cardiovascular biology

Serum proteins may facilitate the identification of Kawasaki disease and promote in vitro neutrophil infiltration.

In Scientific Reports on 24 September 2020 by Li, S. C., Tsai, K. W., et al.

Kawasaki disease (KD) usually affects the children younger than 5 years of age and subsequently causes coronary artery lesions (CALs) without timely identification and treatment. Developing a robust and fast prediction method may facilitate the timely diagnosis of KD, significantly reducing the risk of CALs in KD patients. The levels of inflammatory serum proteins dramatically vary during the onsets of many immune diseases, including in KD. However, our understanding of their pathogenic roles in KD is behind satisfaction. The purpose of this study was to evaluate candidate diagnostic serum proteins and the potential mechanism in KD using iTRAQ gel-free proteomics. We enrolled subjects and conducted iTRAQ gel-free proteomics to globally screen serum proteins followed by specific validation with ELISA. Further in vitro leukocyte trans-endothelial model was also applied to investigate the pathogenesis roles of inflammatory serum proteins. We identified six KD protein biomarkers, including Protein S100-A8 (S100A8), Protein S100-A9 (S100A9), Protein S100-A12 (S100A12), Peroxiredoxin-2 (PRDX2), Neutrophil defensin 1 (DEFA1) and Alpha-1-acid glycoprotein 1 (ORM1). They enabled us to develop a high-performance KD prediction model with an auROC value of 0.94, facilitating the timely identification of KD. Further assays concluded that recombinant S100A12 protein treatment activated neutrophil surface adhesion molecules responsible for adhesion to endothelial cells. Therefore, S100A12 promoted both freshly clinically isolated neutrophils and neutrophil-like cells to infiltrate through the endothelial layer in vitro. Finally, the antibody against S100A12 may attenuate the infiltration promoted by S100A12. Our result demonstrated that evaluating S100A8, S100A9, S100A12, PRDX2, DEFA1 and ORM1 levels may be a good diagnostic tool of KD. Further in vitro study implied that S100A12 could be a potential therapeutic target for KD.

  • Homo sapiens (Human)

MeCP2-regulated miRNAs control early human neurogenesis through differential effects on ERK and AKT signaling.

In Molecular Psychiatry on 1 April 2018 by Mellios, N., Feldman, D. A., et al.

Rett syndrome (RTT) is an X-linked, neurodevelopmental disorder caused primarily by mutations in the methyl-CpG-binding protein 2 (MECP2) gene, which encodes a multifunctional epigenetic regulator with known links to a wide spectrum of neuropsychiatric disorders. Although postnatal functions of MeCP2 have been thoroughly investigated, its role in prenatal brain development remains poorly understood. Given the well-established importance of microRNAs (miRNAs) in neurogenesis, we employed isogenic human RTT patient-derived induced pluripotent stem cell (iPSC) and MeCP2 short hairpin RNA knockdown approaches to identify novel MeCP2-regulated miRNAs enriched during early human neuronal development. Focusing on the most dysregulated miRNAs, we found miR-199 and miR-214 to be increased during early brain development and to differentially regulate extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase and protein kinase B (PKB/AKT) signaling. In parallel, we characterized the effects on human neurogenesis and neuronal differentiation brought about by MeCP2 deficiency using both monolayer and three-dimensional (cerebral organoid) patient-derived and MeCP2-deficient neuronal culture models. Inhibiting miR-199 or miR-214 expression in iPSC-derived neural progenitors deficient in MeCP2 restored AKT and ERK activation, respectively, and ameliorated the observed alterations in neuronal differentiation. Moreover, overexpression of miR-199 or miR-214 in the wild-type mouse embryonic brains was sufficient to disturb neurogenesis and neuronal migration in a similar manner to Mecp2 knockdown. Taken together, our data support a novel miRNA-mediated pathway downstream of MeCP2 that influences neurogenesis via interactions with central molecular hubs linked to autism spectrum disorders.

  • Homo sapiens (Human)
  • Genetics

Usp16 contributes to somatic stem-cell defects in Down's syndrome.

In Nature on 19 September 2013 by Adorno, M., Sikandar, S., et al.

Down's syndrome results from full or partial trisomy of chromosome 21. However, the consequences of the underlying gene-dosage imbalance on adult tissues remain poorly understood. Here we show that in Ts65Dn mice, which are trisomic for 132 genes homologous to genes on human chromosome 21, triplication of Usp16 reduces the self-renewal of haematopoietic stem cells and the expansion of mammary epithelial cells, neural progenitors and fibroblasts. In addition, Usp16 is associated with decreased ubiquitination of Cdkn2a and accelerated senescence in Ts65Dn fibroblasts. Usp16 can remove ubiquitin from histone H2A on lysine 119, a critical mark for the maintenance of multiple somatic tissues. Downregulation of Usp16, either by mutation of a single normal Usp16 allele or by short interfering RNAs, largely rescues all of these defects. Furthermore, in human tissues overexpression of USP16 reduces the expansion of normal fibroblasts and postnatal neural progenitors, whereas downregulation of USP16 partially rescues the proliferation defects of Down's syndrome fibroblasts. Taken together, these results suggest that USP16 has an important role in antagonizing the self-renewal and/or senescence pathways in Down's syndrome and could serve as an attractive target to ameliorate some of the associated pathologies.

  • Stem Cells and Developmental Biology

Immunomagnetic bead separation of mononuclear cells from contaminating granulocytes in cryopreserved blood samples.

In Cryobiology on 1 December 2009 by Preobrazhensky, S. N. & Bahler, D. W.

Density gradient centrifugation usually allows efficient separation of mononuclear cells from granulocytes using fresh human blood samples. However, we have found that with cryopreserved blood samples, density gradient centrifugation fails to separate granulocytes from mononuclear cells and have explored using immunomagnetic anti-CD15 microbeads as an alternate method to separate these cell populations. Using cryopreserved blood samples from 10 healthy donors we have shown that granulocytes express a significantly higher level of CD15 antigen than monocytes and lymphocytes, which allows for their efficient separation from mononuclear cells using anti-CD15 microbeads. This procedure is critical for purification of individual cell populations from cryopreserved leukocyte samples and could also potentially be applied to avoid granulocyte contamination of mononuclear cells isolated from stored blood and from patients with sepsis or thermal injury.

  • Cardiovascular biology
  • Immunology and Microbiology
View this product on CiteAb