Product Citations: 4

The immunosuppressive tumor microenvironment (TME) is a major barrier to immunotherapy. Within solid tumors, why monocytes preferentially differentiate into immunosuppressive tumor-associated macrophages (TAMs) rather than immunostimulatory dendritic cells (DCs) remains unclear. Using multiple murine sarcoma models, we find that the TME induces tumor cells to produce retinoic acid (RA), which polarizes intratumoral monocyte differentiation toward TAMs and away from DCs via suppression of DC-promoting transcription factor Irf4. Genetic inhibition of RA production in tumor cells or pharmacologic inhibition of RA signaling within TME increases stimulatory monocyte-derived cells, enhances T cell-dependent anti-tumor immunity, and synergizes with immune checkpoint blockade. Furthermore, an RA-responsive gene signature in human monocytes correlates with an immunosuppressive TME in multiple human tumors. RA has been considered as an anti-cancer agent, whereas our work demonstrates its tumorigenic capability via myeloid-mediated immune suppression and provides proof of concept for targeting this pathway for tumor immunotherapy.
Copyright © 2020 Elsevier Inc. All rights reserved.

  • Cancer Research
  • Immunology and Microbiology

Systemic inflammation in xenograft recipients precedes activation of coagulation.

In Xenotransplantation on 12 September 2014 by Ezzelarab, M. B., Ekser, B., et al.

Dysregulation of coagulation is considered a major barrier against successful pig organ xenotransplantation in non-human primates. Inflammation is known to promote activation of coagulation. The role of pro-inflammatory factors as well as the relationship between inflammation and activation of coagulation in xenograft recipients is poorly understood.
Baboons received kidney (n=3), heart (n=4), or artery patch (n=8) xenografts from α1,3-galactosyltransferase gene-knockout (GTKO) pigs or GTKO pigs additionally transgenic for human complement-regulatory protein CD46 (GTKO/CD46). Immunosuppression (IS) was based on either CTLA4Ig or anti-CD154 costimulation blockade. Three artery patch recipients did not receive IS. Pro-inflammatory cytokines, chemokines, and coagulation parameters were evaluated in the circulation after transplantation. In artery patch recipients, monocytes and dendritic cells (DC) were monitored in peripheral blood. Expression of tissue factor (TF) and CD40 on monocytes and DC were assessed by flow cytometry. C-reactive protein (C-RP) levels in the blood and C-RP deposition in xenografts as well as native organs were evaluated. Baboon and pig C-RP mRNA in heart and kidney xenografts were evaluated.
In heart and kidney xenograft recipients, the levels of INFγ, TNF-α, IL-12, and IL-8 were not significantly higher after transplantation. However, MCP-1 and IL-6 levels were significantly higher after transplantation, particularly in kidney recipients. Elevated C-RP levels preceded activation of coagulation in heart and kidney recipients, where high levels of C-RP were maintained until the time of euthanasia in both heart and kidney recipients. In artery patch recipients, INFγ, TNF-α, IL-12, IL-8, and MCP-1 were elevated with no IS, while IL-6 was not. With IS, INFγ, TNF-α, IL-12, IL-8, and MCP-1 were reduced, but IL-6 was elevated. Elevated IL-6 levels were observed as early as 2 weeks in artery patch recipients. While IS was associated with reduced thrombin activation, fibrinogen and C-RP levels were increased when IS was given. There was a significant positive correlation between C-RP, IL-6, and fibrinogen levels. Additionally, absolute numbers of monocytes were significantly increased when IS was given, but not without IS. This was associated with increased CD40 and TF expression on CD14+ monocytes and lineage(neg) CD11c+ DC, with increased differentiation of the pro-inflammatory CD14+ CD11c+ monocyte population. At the time of euthanasia, C-RP deposition in kidney and heart xenografts, C-RP positive cells in artery patch xenograft and native lungs were detected. Finally, high levels of both pig and baboon C-RP mRNA were detected in heart and kidney xenografts.
Inflammatory responses precede activation of coagulation after organ xenotransplantation. Early upregulation of C-RP and IL-6 levels may amplify activation of coagulation through upregulation of TF on innate immune cells. Prevention of systemic inflammation in xenograft recipients (SIXR) may be required to prevent dysregulation of coagulation and avoid excessive IS after xenotransplantation.
© 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  • Immunology and Microbiology

Experimental inoculation of juvenile rhesus macaques with primate enteric caliciviruses.

In PLoS ONE on 6 June 2012 by Sestak, K., Feely, S., et al.

Tissue culture-adapted Tulane virus (TV), a GI.1 rhesus enteric calicivirus (ReCV), and a mixture of GII.2 and GII.4 human norovirus (NoV)-containing stool sample were used to intrastomacheally inoculate juvenile rhesus macaques (Macaca mulatta) in order to evaluate infection caused by these viruses. METHODOLOGY & FINDINGS: Two of the three TV-inoculated macaques developed diarrhea, fever, virus-shedding in stools, inflammation of duodenum and 16-fold increase of TV-neutralizing (VN) serum antibodies but no vomiting or viremia. No VN-antibody responses could be detected against a GI.2 ReCV strain FT285, suggesting that TV and FT285 represent different ReCV serotypes. Both NoV-inoculated macaques remained asymptomatic but with demonstrable virus shedding in one animal. Examination of duodenum biopsies of the TV-inoculated macaques showed lymphocytic infiltration of the lamina propria and villous blunting. TV antigen-positive (TV+) cells were detected in the lamina propria. In most of the TV+ cells TV co-localized perinuclearly with calnexin--an endoplasmic reticulum protein. A few CD20+TV+ double-positive B cells were also identified in duodenum. To corroborate the authenticity of CD20+TV+ B cells, in vitro cultures of peripheral blood mononuclear cells (PBMCs) from healthy macaques were inoculated with TV. Multicolor flow cytometry confirmed the presence of TV antigen-containing B cells of predominantly CD20+HLA-DR+ phenotype. A 2-log increase of viral RNA by 6 days post inoculation (p<0.05) suggested active TV replication in cultured lymphocytes.
Taken together, our results show that ReCVs represent an alternative cell culture and animal model to study enteric calicivirus replication, pathogenesis and immunity.

  • Macaca mulatta (Rhesus Monkey)

Polychromatic flow cytometric high-throughput assay to analyze the innate immune response to Toll-like receptor stimulation.

In Journal of Immunological Methods on 31 July 2008 by Jansen, K., Blimkie, D., et al.

Polychromatic flow cytometry allows the capture of multidimensional data, providing the technical tool to assess complex immune responses. Interrogation of the adaptive T cell response to infection or vaccination already has benefited greatly from standardized protocols for polychromatic flow cytometric analysis. The innate immune system plays an important role in health and disease, and presents potentially important therapeutic and diagnostic modalities. We describe here a high-throughput polychromatic flow cytometry-based platform that enables the rapid interrogation and large scale screening of human blood antigen presenting cell responses to Toll-like receptor (TLR) ligands and other innate immune modulators. Using this assay, we found that for certain stimuli (e.g., TLR9 and TLR3 ligands), the general protocol for intracellular cytokine cytometry had to be significantly modified to allow response detection. Furthermore, high concentrations of TLR7/8 and TLR4 stimuli caused substantial changes in lineage markers, potentially confounding analysis if one were to use a conventional "lineage-negative" cocktail. The assay we developed is reproducible and has been used to show that a given individual's TLR response pattern is relatively stable over at least several months. This protocol is in strict compliance with published guidelines for polychromatic flow cytometry, provides a common platform for scientists to compare their results directly, and may be applicable to the diagnostic evaluation of Toll-like receptor function and the rapid screening of promising therapeutic innate immune modulators.

  • Immunology and Microbiology
View this product on CiteAb