Product Citations: 5

In Vitro Generation of Haploid Germ Cells from Human XY and XXY Immature Testes in a 3D Organoid System.

In Bioengineering on 3 July 2024 by Galdon, G., Zarandi, N. P., et al.

Increasing survival rates of children following cancer treatment have resulted in a significant population of adult survivors with the common side effect of infertility. Additionally, the availability of genetic testing has identified Klinefelter syndrome (classic 47,XXY) as the cause of future male infertility for a significant number of prepubertal patients. This study explores new spermatogonia stem cell (SSC)-based fertility therapies to meet the needs of these patients. Testicular cells were isolated from cryopreserved human testes tissue stored from XY and XXY prepubertal patients and propagated in a two-dimensional culture. Cells were then incorporated into a 3D human testicular organoid (HTO) system. During a 3-week culture period, HTOs maintained their structure, viability, and metabolic activity. Cell-specific PCR and flow cytometry markers identified undifferentiated spermatogonia, Sertoli, Leydig, and peritubular cells within the HTOs. Testosterone was produced by the HTOs both with and without hCG stimulation. Upregulation of postmeiotic germ cell markers was detected after 23 days in culture. Fluorescence in situ hybridization (FISH) of chromosomes X, Y, and 18 identified haploid cells in the in vitro differentiated HTOs. Thus, 3D HTOs were successfully generated from isolated immature human testicular cells from both euploid (XY) and Klinefelter (XXY) patients, supporting androgen production and germ cell differentiation in vitro.

In vitro propagation of XXY human Klinefelter spermatogonial stem cells: A step towards new fertility opportunities.

In Frontiers in Endocrinology on 18 October 2022 by Galdon, G., Deebel, N. A., et al.

Klinefelter Syndrome (KS) is characterized by a masculine phenotype, supernumerary sex chromosomes (47, XXY), and impaired fertility due to loss of spermatogonial stem cells (SSCs). Early testicular cryopreservation could be an option for future fertility treatments in these patients, including SSCs transplantation or in vitro spermatogenesis. It is critically essential to adapt current in vitro SSCs propagation systems as a fertility option for KS patients. KS human testicular samples (13,15- and 17-year-old non-mosaic KS boys) were donated by patients enrolled in an experimental testicular tissue banking program. Testicular cells were isolated from cryopreserved tissue and propagated in long-term culture for 110 days. Cell-specific gene expression confirmed the presence of all four main cell types found in testes: Spermatogonia, Sertoli, Leydig, and Peritubular cells. A population of ZBTB16+ undifferentiated spermatogonia was identified throughout the culture using digital PCR. Flow cytometric analysis also detected an HLA-/CD9+/CD49f+ population, indicating maintenance of a stem cell subpopulation among the spermatogonial cells. FISH staining for chromosomes X and Y showed most cells containing an XXY karyotype with a smaller number containing either XY or XX. Both XY and XX populations were able to be enriched by magnetic sorting for CD9 as a spermatogonia marker. Molecular karyotyping demonstrated genomic stability of the cultured cells, over time. Finally, single-cell RNAseq analysis confirmed transcription of ID4, TCN2, and NANOS 3 within a population of putative SSCs population. This is the first study showing successful isolation and long-term in vitro propagation of human KS testicular cells. These findings could inform the development of therapeutic fertility options for KS patients, either through in vitro spermatogenesis or transplantation of SSC, in vivo.
Copyright © 2022 Galdon, Deebel, Zarandi, Teramoto, Lue, Wang, Swerdloff, Pettenati, Kearns, Howards, Kogan, Atala and Sadri-Ardekani.

  • Homo sapiens (Human)
  • Endocrinology and Physiology
  • Stem Cells and Developmental Biology

Immunotherapy with anti-disialoganglioside dinutuximab has improved survival for children with high-risk neuroblastoma (NB) when given after induction chemotherapy and surgery. However, disease recurrence and resistance persist. Dinutuximab efficacy has not been evaluated when initiated before primary tumor removal. Using a surgical mouse model of human NB, we examined if initiating dinutuximab plus ex vivo-activated natural killer (aNK) cells before resection of the primary tumor improves survival.
In vitro, human NB cells (SMS-KCNR-Fluc, CHLA-255-Fluc) were treated with dinutuximab and/or aNK cells and cytotoxicity was measured. In vivo, NB cells (SMS-KCNR-Fluc, CHLA-255-Fluc, or COG-N-415x PDX) were injected into the kidney of NOD-scid gamma mice. Mice received eight intravenous infusions of aNK cells plus dinutuximab beginning either 12 days before or 2 days after resection of primary tumors. Tumors in control mice were treated by resection alone or with immunotherapy alone. Disease was quantified by bioluminescent imaging and survival was monitored. aNK cell infiltration into primary tumors was quantified by flow cytometry and immunohistochemistry at varying timepoints.
In vitro, aNK cells and dinutuximab were more cytotoxic than either treatment alone. In vivo, treatment with aNK cells plus dinutuximab prior to resection of the primary tumor was most effective in limiting metastatic disease and prolonging survival. aNK cell infiltration into xenograft tumors was observed after 1 day and peaked at 5 days following injection.
Dinutuximab plus aNK cell immunotherapy initiated before resection of primary tumors decreases disease burden and prolongs survival in an experimental mouse model of NB. These findings support the clinical investigation of this treatment strategy during induction therapy in patients with high-risk NB.
© Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

  • Cancer Research
  • Immunology and Microbiology

Immunotherapy of neuroblastoma that remains after myeloablative chemotherapy with anti-GD2 antibody dinutuximab has increased the two-year event-free and overall survival of high-risk neuroblastoma patients; however, 40% of patients develop recurrent disease during or after this treatment. To determine the potential of such antibody-based immunotherapy earlier in treatment, a mouse model was developed in which surgical resection of the primary tumor was followed by therapy of residual disease with dinutuximab combined with ex vivo-activated human natural killer (aNK) cells.
The effect of combining dinutuximab with human aNK cells was determined in vitro with cellular cytotoxicity and Matrigel invasion assays. The in vivo efficacy of dinutuximab and aNK cells against neuroblastoma was assessed following resection of primary tumors formed by two cell lines or a patient-derived xenograft (PDX) in immunodeficient NOD-scid gamma mice.
In vitro, the combination of aNK cells and dinutuximab caused cytotoxicity and decreased invasiveness of three human neuroblastoma cell lines. Treatment of mice with dinutuximab combined with aNK cells after surgical resection of primary intrarenal tumors formed by two cell lines or a PDX decreased tumor cells in liver and bone marrow as evaluated by histopathology and bioluminescence imaging. Survival of mice after resection of these tumors was most significantly increased by treatment with dinutuximab combined with aNK cells compared with that of untreated mice.
The combination of dinutuximab and adoptively transferred human aNK cells following surgical resection of primary neuroblastomas significantly improves survival of immunodeficient mice.
©2018 American Association for Cancer Research.

  • FC/FACS
  • Homo sapiens (Human)
  • Cancer Research

Self-assembled liver organoids recapitulate hepatobiliary organogenesis in vitro.

In Hepatology on 1 February 2018 by Vyas, D., Baptista, P. M., et al.

Several three-dimensional cell culture systems are currently available to create liver organoids. In gneral, these systems display better physiologic and metabolic aspects of intact liver tissue compared with two-dimensional culture systems. However, none reliably mimic human liver development, including parallel formation of hepatocyte and cholangiocyte anatomical structures. Here, we show that human fetal liver progenitor cells self-assembled inside acellular liver extracellular matrix scaffolds to form three-dimensional liver organoids that recapitulated several aspects of hepatobiliary organogenesis and resulted in concomitant formation of progressively more differentiated hepatocytes and bile duct structures. The duct morphogenesis process was interrupted by inhibiting Notch signaling, in an attempt to create a liver developmental disease model with a similar phenotype to Alagille syndrome. Conclusion: In the current study, we created an in vitro model of human liver development and disease, physiology, and metabolism, supported by liver extracellular matrix substrata; we envision that it will be used in the future to study mechanisms of hepatic and biliary development and for disease modeling and drug screening. (Hepatology 2018;67:750-761).
© 2017 by the American Association for the Study of Liver Diseases.

View this product on CiteAb