Product Citations: 14

Monomorphic epitheliotropic intestinal T-cell lymphoma with gallbladder involvement: A case report.

In Molecular and Clinical Oncology on 1 July 2025 by Okuda, T., Shirase, T., et al.

Monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL) is a rare and aggressive primary intestinal lymphoma with a poor prognosis. MEITL can metastasize to the central nervous system, liver and spleen, but gallbladder involvement has not yet been reported. The present study describes the case of a 57-year-old woman who presented with abdominal distention, pain and vomiting. Contrast-enhanced computed tomography revealed thickening and perforation of the small intestinal wall, and a gallbladder mass. Histopathological analysis of the affected small intestine and gallbladder revealed a dense infiltrate of medium-sized monomorphic lymphocytes with a CD3+, CD4-, CD8+ and TIA-1+ phenotype. Based on the absence of celiac disease, aggressive clinical course, and characteristic histopathological and immunophenotypic features, a diagnosis of MEITL with gallbladder involvement was established. The patient underwent small intestinal resection and cholecystectomy, followed by chemotherapy, which was completed without gastrointestinal or gallbladder perforation. Diagnostic resection is currently the best approach for suspected malignant lymphoma of the gallbladder. This rare case of MEITL with gallbladder involvement highlights the importance of considering this diagnosis in similar clinical scenarios and the role of cholecystectomy, which can serve both diagnostic and therapeutic purposes.
Copyright: © 2025 Okuda et al.

  • Cancer Research
  • Immunology and Microbiology

The primary goal of surgery in HNSCC is the complete resection of tumor cells with maximum preservation of normal tissue. The membrane Hsp70-targeting fluorescence labelled peptide TPP-IRDye800 represents a promising tool for real-time intraoperative tumor visualization, enabling the detection of true tumor margins, critical isles of high-grade dysplasia and LN metastases.
Membrane Hsp70 (mHsp70) expression on HNSCC cell lines and primary HNSCC was determined by flow cytometry and fluorescence microscopy using FITC-conjugated mAb cmHsp70.1 and TPP. TPP-IRDye800 was sprayed on freshly resected tumor material of immunohistochemically confirmed HNSCC and LN metastases for tumor imaging. TBRs were compared using TPP-IRDye800 and Cetuximab-IRDye680, recognizing EGFR.
mHsp70 expressing HNSCC cells specifically bind and internalize TPP in vitro. The TBR (2.56 ± 0.39) and AUC [0.98 CI, 0.95-1.00 vs. 0.91 CI, 0.85-0.97] of TPP-IRDye800 on primary HNSCC was significantly higher than Cetuximab-IRDye680 (1.61 ± 0.39) (p = 0.0068) and TPP-IRDye800 provided a superior tumor delineation. Fluorescence imaging showed higher AUC values than a visual inspection by surgeons [0.97 CI, 0.94-1.00 vs. 0.92 CI, 0.88-0.97] (p = 0.048). LN metastases could be visualized using TPP-IRDye800. Real-time tissue delineation was confirmed using the clinically applied KARL-STORZ imaging system.
TPP-IRDye800 is a promising fluorescence imaging probe for HNSCC.
© 2024. The Author(s).

  • ICC-IF
  • Cancer Research

In Vitro Generation of Haploid Germ Cells from Human XY and XXY Immature Testes in a 3D Organoid System.

In Bioengineering on 3 July 2024 by Galdon, G., Zarandi, N. P., et al.

Increasing survival rates of children following cancer treatment have resulted in a significant population of adult survivors with the common side effect of infertility. Additionally, the availability of genetic testing has identified Klinefelter syndrome (classic 47,XXY) as the cause of future male infertility for a significant number of prepubertal patients. This study explores new spermatogonia stem cell (SSC)-based fertility therapies to meet the needs of these patients. Testicular cells were isolated from cryopreserved human testes tissue stored from XY and XXY prepubertal patients and propagated in a two-dimensional culture. Cells were then incorporated into a 3D human testicular organoid (HTO) system. During a 3-week culture period, HTOs maintained their structure, viability, and metabolic activity. Cell-specific PCR and flow cytometry markers identified undifferentiated spermatogonia, Sertoli, Leydig, and peritubular cells within the HTOs. Testosterone was produced by the HTOs both with and without hCG stimulation. Upregulation of postmeiotic germ cell markers was detected after 23 days in culture. Fluorescence in situ hybridization (FISH) of chromosomes X, Y, and 18 identified haploid cells in the in vitro differentiated HTOs. Thus, 3D HTOs were successfully generated from isolated immature human testicular cells from both euploid (XY) and Klinefelter (XXY) patients, supporting androgen production and germ cell differentiation in vitro.

The detection of temperature by the human sensory system is life-preserving and highly evolutionarily conserved. Platelets are sensitive to temperature changes and are activated by a decrease in temperature, akin to sensory neurons. However, the molecular mechanism of this temperature-sensing ability is unknown. Yet, platelet activation by temperature could contribute to numerous clinical sequelae, most importantly to reduced quality of ex vivo-stored platelets for transfusion. In this multidisciplinary study, we present evidence for the expression of the temperature-sensitive ion channel transient receptor potential cation channel subfamily member 8 (TRPM8) in human platelets and precursor cells. We found the TRPM8 mRNA and protein in MEG-01 cells and platelets. Inhibition of TRPM8 prevented temperature-induced platelet activation and shape change. However, chemical agonists of TRPM8 did not seem to have an acute effect on platelets. When exposing platelets to below-normal body temperature, we detected a cytosolic calcium increase which was independent of TRPM8 but was completely dependent on the calcium release from the endoplasmic reticulum. Because of the high interindividual variability of TRPM8 expression, a population-based approach should be the focus of future studies. Our study suggests that the cold response of platelets is complex and TRPM8 appears to play a role in early temperature-induced activation of platelets, while other mechanisms likely contribute to later stages of temperature-mediated platelet response.
Copyright: © 2024 Stratiievska et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

  • Homo sapiens (Human)
  • Cell Biology

In vitro propagation of XXY human Klinefelter spermatogonial stem cells: A step towards new fertility opportunities.

In Frontiers in Endocrinology on 18 October 2022 by Galdon, G., Deebel, N. A., et al.

Klinefelter Syndrome (KS) is characterized by a masculine phenotype, supernumerary sex chromosomes (47, XXY), and impaired fertility due to loss of spermatogonial stem cells (SSCs). Early testicular cryopreservation could be an option for future fertility treatments in these patients, including SSCs transplantation or in vitro spermatogenesis. It is critically essential to adapt current in vitro SSCs propagation systems as a fertility option for KS patients. KS human testicular samples (13,15- and 17-year-old non-mosaic KS boys) were donated by patients enrolled in an experimental testicular tissue banking program. Testicular cells were isolated from cryopreserved tissue and propagated in long-term culture for 110 days. Cell-specific gene expression confirmed the presence of all four main cell types found in testes: Spermatogonia, Sertoli, Leydig, and Peritubular cells. A population of ZBTB16+ undifferentiated spermatogonia was identified throughout the culture using digital PCR. Flow cytometric analysis also detected an HLA-/CD9+/CD49f+ population, indicating maintenance of a stem cell subpopulation among the spermatogonial cells. FISH staining for chromosomes X and Y showed most cells containing an XXY karyotype with a smaller number containing either XY or XX. Both XY and XX populations were able to be enriched by magnetic sorting for CD9 as a spermatogonia marker. Molecular karyotyping demonstrated genomic stability of the cultured cells, over time. Finally, single-cell RNAseq analysis confirmed transcription of ID4, TCN2, and NANOS 3 within a population of putative SSCs population. This is the first study showing successful isolation and long-term in vitro propagation of human KS testicular cells. These findings could inform the development of therapeutic fertility options for KS patients, either through in vitro spermatogenesis or transplantation of SSC, in vivo.
Copyright © 2022 Galdon, Deebel, Zarandi, Teramoto, Lue, Wang, Swerdloff, Pettenati, Kearns, Howards, Kogan, Atala and Sadri-Ardekani.

  • Homo sapiens (Human)
  • Endocrinology and Physiology
  • Stem Cells and Developmental Biology
View this product on CiteAb