Product Citations: 6

N-MYC impairs innate immune signaling in high-grade serous ovarian carcinoma.

In Science Advances on 17 May 2024 by Miranda, A., Pattnaik, S., et al.

High-grade serous ovarian cancer (HGSC) is a challenging disease, especially for patients with immunologically "cold" tumors devoid of tumor-infiltrating lymphocytes (TILs). We found that HGSC exhibits among the highest levels of MYCN expression and transcriptional signature across human cancers, which is strongly linked to diminished features of antitumor immunity. N-MYC repressed basal and induced IFN type I signaling in HGSC cell lines, leading to decreased chemokine expression and T cell chemoattraction. N-MYC inhibited the induction of IFN type I by suppressing tumor cell-intrinsic STING signaling via reduced STING oligomerization, and by blunting RIG-I-like receptor signaling through inhibition of MAVS aggregation and localization in the mitochondria. Single-cell RNA sequencing of human clinical HGSC samples revealed a strong negative association between cancer cell-intrinsic MYCN transcriptional program and type I IFN signaling. Thus, N-MYC inhibits tumor cell-intrinsic innate immune signaling in HGSC, making it a compelling target for immunotherapy of cold tumors.

  • Homo sapiens (Human)
  • Cancer Research
  • Immunology and Microbiology

B cells orchestrate tolerance to the neuromyelitis optica autoantigen AQP4.

In Nature on 1 March 2024 by Maisam Afzali, A., Nirschl, L., et al.

Neuromyelitis optica is a paradigmatic autoimmune disease of the central nervous system, in which the water-channel protein AQP4 is the target antigen1. The immunopathology in neuromyelitis optica is largely driven by autoantibodies to AQP42. However, the T cell response that is required for the generation of these anti-AQP4 antibodies is not well understood. Here we show that B cells endogenously express AQP4 in response to activation with anti-CD40 and IL-21 and are able to present their endogenous AQP4 to T cells with an AQP4-specific T cell receptor (TCR). A population of thymic B cells emulates a CD40-stimulated B cell transcriptome, including AQP4 (in mice and humans), and efficiently purges the thymic TCR repertoire of AQP4-reactive clones. Genetic ablation of Aqp4 in B cells rescues AQP4-specific TCRs despite sufficient expression of AQP4 in medullary thymic epithelial cells, and B-cell-conditional AQP4-deficient mice are fully competent to raise AQP4-specific antibodies in productive germinal-centre responses. Thus, the negative selection of AQP4-specific thymocytes is dependent on the expression and presentation of AQP4 by thymic B cells. As AQP4 is expressed in B cells in a CD40-dependent (but not AIRE-dependent) manner, we propose that thymic B cells might tolerize against a group of germinal-centre-associated antigens, including disease-relevant autoantigens such as AQP4.
© 2024. The Author(s).

  • Immunology and Microbiology

Secretomes of M1 and M2 macrophages decrease the release of neutrophil extracellular traps.

In Scientific Reports on 20 September 2023 by Manda-Handzlik, A., Cieloch, A., et al.

The release of neutrophil extracellular traps (NETs) can be either beneficial or detrimental for the host, thus it is necessary to maintain a balance between formation and clearance of NETs. Multiple physiological factors eliciting NET release have been identified, yet the studies on natural signals limiting NET formation have been scarce. Accordingly, our aim was to analyze whether cytokines or immune cells can inhibit NET formation. To that end, human granulocytes were incubated with interleukin (IL)-4, IL-10, transforming growth factor beta-2 or adenosine and then stimulated to release NETs. Additionally, neutrophils were cultured in the presence of natural killer (NK) cells, regulatory T cells (Tregs), pro-inflammatory or anti-inflammatory macrophages (M1 or M2 macrophages), or in the presence of NK/Tregs/M1 macrophages or M2 macrophages-conditioned medium and subsequently stimulated to release NETs. Our studies showed that secretome of M1 and M2 macrophages, but not of NK cells and Tregs, diminishes NET formation. Co-culture experiments did not reveal any effect of immune cells on NET release. No effect of cytokines or adenosine on NET release was found. This study highlights the importance of paracrine signaling at the site of infection and is the first to show that macrophage secretome can regulate NET formation.
© 2023. Springer Nature Limited.

Defining TCRγδ lymphoproliferative disorders by combined immunophenotypic and molecular evaluation.

In Nature Communications on 8 June 2022 by Teramo, A., Binatti, A., et al.

Tγδ large granular lymphocyte leukemia (Tγδ LGLL) is a rare lymphoproliferative disease, scantily described in literature. A deep-analysis, in an initial cohort of 9 Tγδ LGLL compared to 23 healthy controls, shows that Tγδ LGLL dominant clonotypes are mainly public and exhibit different V-(D)-J γ/δ usage between patients with symptomatic and indolent Tγδ neoplasm. Moreover, some clonotypes share the same rearranged sequence. Data obtained in an enlarged cohort (n = 36) indicate the importance of a combined evaluation of immunophenotype and STAT mutational profile for the correct management of patients with Tγδ cell expansions. In fact, we observe an association between Vδ2/Vγ9 clonality and indolent course, while Vδ2/Vγ9 negativity correlates with symptomatic disease. Moreover, the 7 patients with STAT3 mutations have neutropenia and a CD56-/Vδ2- phenotype, and the 3 cases with STAT5B mutations display an asymptomatic clinical course and CD56/Vδ2 expression. All these data indicate that biological characterization is needed for Tγδ-cell neoplasm definition.
© 2022. The Author(s).

  • FC/FACS
  • Homo sapiens (Human)

Expression of Sex Hormone Receptor and Immune Response Genes in Peripheral Blood Mononuclear Cells During the Menstrual Cycle.

In Frontiers in Endocrinology on 12 October 2021 by Brundin, P. M. A., Landgren, B. M., et al.

Sex hormones are known to interact with the immune system on multiple levels but information on the types of sex hormone receptors (SHR) and their expression levels in immune cells is scarce. Estrogen, testosterone and progesterone are all considered to interact with the immune system through their respective cell receptors (ERα and ERβ including the splice variant ERβ2, AR and PGR). In this study expression levels of SHR genes in peripheral blood mononuclear cells (PBMCs) and cell subsets (CD4+ and CD8+ T-cells, CD56+ NK-cells, CD14+ monocytes and CD19+ B-cells) were analyzed using standard manual qPCR or a qPCR array (TLDA). Nine healthy individuals including men (n = 2), premenopausal (Pre-MP, n = 5) and postmenopausal (post-MP, n = 2) women were sampled for PBMCs which were separated to cell subsets using FACS. Ten Pre-MP women were longitudinally sampled for total PBMCs at different phases of the menstrual cycle. We found that ERα was most abundant and, unexpectedly, that ERβ2 was the dominant ERβ variant in several FACS sorted cell subsets. In total PBMCs, SHR (ERα, ERβ1, ERβ2, and AR) expression did not fluctuate according to the phase of the menstrual cycle and PGR was not expressed. However, several immune response genes (GATA3, IFNG, IL1B, LTA, NFKB1, PDCD1, STAT3, STAT5A, TBX21, TGFB1, TNFA) were more expressed during the ovulatory and mid-luteal phases. Sex hormone levels did not correlate significantly with gene expression of SHR or immune response genes, but sex hormone-binding globulin (SHBG), a steroid hormone transporting protein, was positively correlated to expression of ERβ1 gene. This study provides new insights in the distribution of ERs in immune cells. Furthermore, expression patterns of several immune response genes differ significantly between phases of the menstrual cycle, supporting a role for sex hormones in the immune response.
Copyright © 2021 Brundin, Landgren, Fjällström, Shamekh, Gustafsson, Johansson and Nalvarte.

  • FC/FACS
  • Homo sapiens (Human)
  • Cardiovascular biology
  • Endocrinology and Physiology
  • Immunology and Microbiology
View this product on CiteAb