Product Citations: 13

The CLARINET trial led to the approval of lanreotide for the treatment of patients with gastroenteropancreatic neuroendocrine tumors (NETs). It is hypothesized that lanreotide regulates proliferation, hormone synthesis, and other cellular functions via binding to somatostatin receptors (SSTR1-5) present in NETs. However, our knowledge of how lanreotide affects the immune system is limited. In vitro studies have investigated functional immune response parameters with lanreotide treatment in healthy donor T cell subsets, encompassing the breadth of SSTR expression, apoptosis induction, cytokine production, and activity of transcription factor signaling pathways. In our study, we characterized in vitro immune mechanisms in healthy donor T cells in response to lanreotide. We also studied the in vivo effects by looking at differential gene expression pre- and post-lanreotide therapy in patients with NET. Immune-focused gene and protein expression profiling was performed on peripheral blood samples from 17 NET patients and correlated with clinical response. In vivo, lanreotide therapy showed reduced effects on wnt, T cell receptor (TCR), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) signaling in CD8+ T cells in responders compared to non-responders. Compared to non-responders, responders showed reduced effects on cytokine and chemokine signaling but greater effects on ubiquitination and proteasome degradation genes. Our results suggest significant lanreotide pharmacodynamic effects on immune function in vivo, which correlate with responses in NET patients. This is not evident from experimental in vitro settings.

  • Cancer Research
  • Endocrinology and Physiology
  • Immunology and Microbiology

Phenotypic and Functional Characterization of Memory CD4+ and CD8+ T Cells After Antigenic Stimulation.

In Methods in Molecular Biology (Clifton, N.J.) on 16 April 2024 by do Prado Servian, C., Masson, L. C., et al.

The encounter of T cells with the antigen through the interaction of T cell receptors with peptides and major histocompatibility complex (MHC) molecules on the surface of antigen-presenting cells (APCs) can generate effector response and memory T cells. Memory T cells developed following infections or vaccination may persist, leading to the generation of a specific immune response upon reexposure to the same pathogen through rapid clonal proliferation and activation of effector functions. T cell memory subsets can be identified based on the expression of several membrane markers such as CCR7, CD27, and CD45RA. Using fluorescent antibodies against these markers and a flow cytometer, it is possible to perform immunophenotyping via the analysis of cell surface expression of proteins by different subpopulations such as the subsets of naïve, effector, and memory T cells as well as via the analysis of functional markers that further characterize each sample. Intracellular cytokine staining allows for the evaluation of intracellular proteins expressed in T cells in response to antigenic stimulation. This chapter presents the phenotypic and functional characterization of memory T cells after antigenic stimulation, detailing the procedures for identifying intracellular and surface protein markers. Herein, we review and present a reproducible standardized protocol using antibodies for specific markers and applying flow cytometry.
© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

  • Biochemistry and Molecular biology
  • Immunology and Microbiology

Human cytomegalovirus (HCMV) is a leading infectious cause of birth defects and the most common opportunistic infection that causes life-threatening diseases post-transplantation; however, an effective vaccine remains elusive. V160 is a live-attenuated replication defective HCMV vaccine that showed a 42.4% efficacy against primary HCMV infection among seronegative women in a phase 2b clinical trial. Here, we integrated the multicolor flow cytometry, longitudinal T cell receptor (TCR) sequencing, and single-cell RNA/TCR sequencing approaches to characterize the magnitude, phenotype, and functional quality of human T cell responses to V160. We demonstrated that V160 de novo induces IE-1 and pp65 specific durable polyfunctional effector CD8 T cells that are comparable to those induced by natural HCMV infection. We identified a variety of V160-responsive T cell clones which exhibit distinctive "transient" and "durable" expansion kinetics, and revealed a transcriptional signature that marks durable CD8 T cells post-vaccination. Our study enhances the understanding of human T-cell immune responses to V160 vaccination.
© 2024. The Author(s).

  • Homo sapiens (Human)
  • Biochemistry and Molecular biology
  • Immunology and Microbiology

BackgroundAdenovirus-vectored (Ad-vectored) vaccines are typically administered via i.m. injection to humans and are incapable of inducing respiratory mucosal immunity. However, aerosol delivery of Ad-vectored vaccines remains poorly characterized, and its ability to induce mucosal immunity in humans is unknown. This phase Ib trial evaluated the safety and immunogenicity of human serotype-5 Ad-vectored tuberculosis (TB) vaccine (AdHu5Ag85A) delivered to humans via inhaled aerosol or i.m. injection.MethodsThirty-one healthy, previously BCG-vaccinated adults were enrolled. AdHu5Ag85A was administered by single-dose aerosol using Aeroneb Solo Nebulizer or by i.m. injection. The study consisted of the low-dose (LD) aerosol, high-dose (HD) aerosol, and i.m. groups. The adverse events were assessed at various times after vaccination. Immunogenicity data were collected from the peripheral blood and bronchoalveolar lavage samples at baseline, as well as at select time points after vaccination.ResultsThe nebulized aerosol droplets were < 5.39 μm in size. Both LD and HD of AdHu5Ag85A administered by aerosol inhalation and i.m. injection were safe and well tolerated. Both aerosol doses, particularly LD, but not i.m., vaccination markedly induced airway tissue-resident memory CD4+ and CD8+ T cells of polyfunctionality. While as expected, i.m. vaccination induced Ag85A-specific T cell responses in the blood, the LD aerosol vaccination also elicited such T cells in the blood. Furthermore, the LD aerosol vaccination induced persisting transcriptional changes in alveolar macrophages.ConclusionInhaled aerosol delivery of Ad-vectored vaccine is a safe and superior way to elicit respiratory mucosal immunity. This study warrants further development of aerosol vaccine strategies against respiratory pathogens, including TB and COVID-19.Trial registrationClinicalTrial.gov, NCT02337270.FundingThe Canadian Institutes for Health Research (CIHR) and the Natural Sciences and Engineering Research Council of Canada funded this work.

  • Immunology and Microbiology

Immunogenicity of standard and extended dosing intervals of BNT162b2 mRNA vaccine.

In Cell on 11 November 2021 by Payne, R. P., Longet, S., et al.

Extension of the interval between vaccine doses for the BNT162b2 mRNA vaccine was introduced in the United Kingdom to accelerate population coverage with a single dose. At this time, trial data were lacking, and we addressed this in a study of United Kingdom healthcare workers. The first vaccine dose induced protection from infection from the circulating alpha (B.1.1.7) variant over several weeks. In a substudy of 589 individuals, we show that this single dose induces severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibody (NAb) responses and a sustained B and T cell response to the spike protein. NAb levels were higher after the extended dosing interval (6-14 weeks) compared with the conventional 3- to 4-week regimen, accompanied by enrichment of CD4+ T cells expressing interleukin-2 (IL-2). Prior SARS-CoV-2 infection amplified and accelerated the response. These data on dynamic cellular and humoral responses indicate that extension of the dosing interval is an effective immunogenic protocol.
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Genetics
  • Immunology and Microbiology
View this product on CiteAb