Product Citations: 85

ImmuNet: a segmentation-free machine learning pipeline for immune landscape phenotyping in tumors by multiplex imaging.

In Biology Methods and Protocols on 27 January 2025 by Sultan, S., Gorris, M. A. J., et al.

Tissue specimens taken from primary tumors or metastases contain important information for diagnosis and treatment of cancer patients. Multiplex imaging allows in situ visualization of heterogeneous cell populations, such as immune cells, in tissue samples. Most image processing pipelines first segment cell boundaries and then measure marker expression to assign cell phenotypes. In dense tissue environments, this segmentation-first approach can be inaccurate due to segmentation errors or overlapping cells. Here, we introduce the machine-learning pipeline "ImmuNet", which identifies positions and phenotypes of cells without segmenting them. ImmuNet is easy to train: human annotators only need to click on an immune cell and score its expression of each marker-drawing a full cell outline is not required. We trained and evaluated ImmuNet on multiplex images from human tonsil, lung cancer, prostate cancer, melanoma, and bladder cancer tissue samples and found it to consistently achieve error rates below 5%-10% across tissue types, cell types, and tissue densities, outperforming a segmentation-based baseline method. Furthermore, we externally validate ImmuNet results by comparing them to flow cytometric cell count measurements from the same tissue. In summary, ImmuNet is an effective, simpler alternative to segmentation-based approaches when only cell positions and phenotypes, but not their shapes, are required for downstream analyses. Thus, ImmuNet helps researchers to analyze cell positions in multiplex tissue images more easily and accurately.
© The Author(s) 2024. Published by Oxford University Press.

  • FC/FACS
  • Cancer Research
  • Immunology and Microbiology

15-Lipoxygenase promotes resolution of inflammation in lymphedema by controlling Treg cell function through IFN-β.

In Nature Communications on 4 January 2024 by Zamora, A., Nougué, M., et al.

Lymphedema (LD) is characterized by the accumulation of interstitial fluid, lipids and inflammatory cell infiltrate in the limb. Here, we find that LD tissues from women who developed LD after breast cancer exhibit an inflamed gene expression profile. Lipidomic analysis reveals decrease in specialized pro-resolving mediators (SPM) generated by the 15-lipoxygenase (15-LO) in LD. In mice, the loss of SPM is associated with an increase in apoptotic regulatory T (Treg) cell number. In addition, the selective depletion of 15-LO in the lymphatic endothelium induces an aggravation of LD that can be rescued by Treg cell adoptive transfer or ALOX15-expressing lentivector injections. Mechanistically, exogenous injections of the pro-resolving cytokine IFN-β restores both 15-LO expression and Treg cell number in a mouse model of LD. These results provide evidence that lymphatic 15-LO may represent a therapeutic target for LD by serving as a mediator of Treg cell populations to resolve inflammation.
© 2024. The Author(s).

  • Immunology and Microbiology

Impact of Single Hemodialysis Treatment on immune Cell Subpopulations.

In Journal of Clinical Medicine on 25 April 2023 by Donadei, C., Angeletti, A., et al.

Hemodialysis (HD) is known to trigger a chronic inflammatory status, affecting the innate and acquired immune response. This study was aimed at a comparative analysis of immune cell subsets, proliferation, and apoptosis in subjects receiving chronic HD treatment with respect to a healthy control. Regardless of the dialysis filter used, we observed a reshaping of the acquired immune component both with respect to healthy patients and between the various sessions of dialysis treatment, with an impairment of CD3 cells, along with an increase in CD4 and CD8 cell populations producing pro-inflammatory factors such as IL-17 and IFN-gamma. The population of B cells, monocytes and NK cells were not impaired by the dialysis procedure. These results confirmed the high impact of the HD treatment on the patient's immune system, underlying the imbalance of T cell counterparts.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology

Targeting cathepsin B by cycloastragenol enhances antitumor immunity of CD8 T cells via inhibiting MHC-I degradation.

In Journal for Immunotherapy of Cancer on 1 October 2022 by Deng, G., Zhou, L., et al.

The loss of tumor antigens and depletion of CD8 T cells caused by the PD-1/PD-L1 pathway are important factors for tumor immune escape. In recent years, there has been increasing research on traditional Chinese medicine in tumor treatment. Cycloastragenol (CAG), an effective active molecule in Astragalus membranaceus, has been found to have antiviral, anti-aging, anti-inflammatory, and other functions. However, its antitumor effect and mechanism are not clear.
The antitumor effect of CAG was investigated in MC38 and CT26 mouse transplanted tumor models. The antitumor effect of CAG was further analyzed via single-cell multiomics sequencing. Target responsive accessibility profiling technology was used to find the target protein of CAG. Subsequently, the antitumor mechanism of CAG was explored using confocal microscopy, coimmunoprecipitation and transfection of mutant plasmids. Finally, the combined antitumor effect of CAG and PD-1 antibodies in mice or organoids were investigated.
We found that CAG effectively inhibited tumor growth in vivo. Our single-cell multiomics atlas demonstrated that CAG promoted the presentation of tumor cell-surface antigens and was characterized by the enhanced killing function of CD8+ T cells. Mechanistically, CAG bound to its target protein cathepsin B, which then inhibited the lysosomal degradation of major histocompatibility complex I (MHC-I) and promoted the aggregation of MHC-I to the cell membrane, boosting the presentation of the tumor antigen. Meanwhile, the combination of CAG with PD-1 antibody effectively enhanced the tumor killing ability of CD8+ T cells in xenograft mice and colorectal cancer organoids.
Our data reported for the first time that cathepsin B downregulation confers antitumor immunity and explicates the antitumor mechanism of natural product CAG.
© Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

  • Immunology and Microbiology

CAR T cell manufacturing from naive/stem memory T lymphocytes enhances antitumor responses while curtailing cytokine release syndrome.

In The Journal of Clinical Investigation on 15 June 2022 by Arcangeli, S., Bove, C., et al.

Chimeric antigen receptor (CAR) T cell expansion and persistence represent key factors to achieve complete responses and prevent relapses. These features are typical of early memory T cells, which can be highly enriched through optimized manufacturing protocols. Here, we investigated the efficacy and safety profiles of CAR T cell products generated from preselected naive/stem memory T cells (TN/SCM), as compared with unselected T cells (TBULK). Notwithstanding their reduced effector signature in vitro, limiting CAR TN/SCM doses showed superior antitumor activity and the unique ability to counteract leukemia rechallenge in hematopoietic stem/precursor cell-humanized mice, featuring increased expansion rates and persistence together with an ameliorated exhaustion and memory phenotype. Most relevantly, CAR TN/SCM proved to be intrinsically less prone to inducing severe cytokine release syndrome, independently of the costimulatory endodomain employed. This safer profile was associated with milder T cell activation, which translated into reduced monocyte activation and cytokine release. These data suggest that CAR TN/SCM are endowed with a wider therapeutic index compared with CAR TBULK.

  • Immunology and Microbiology
View this product on CiteAb