The human placenta shapes the phenotype of decidual macrophages.
In Cell Reports on 28 March 2023 by Vondra, S., Höbler, A. L., et al.
The human placenta shapes the phenotype of decidual macrophages.
In Cell Reports on 31 January 2023 by Vondra, S., Höbler, A. L., et al.
During human pregnancy, placenta-derived extravillous trophoblasts (EVTs) invade the decidua and communicate with maternal immune cells. The decidua distinguishes into basalis (decB) and parietalis (decP). The latter remains unaffected by EVT invasion. By defining a specific gating strategy, we report the accumulation of macrophages in decB. We describe a decidua basalis-associated macrophage (decBAM) population with a differential transcriptome and secretome compared with decidua parietalis-associated macrophages (decPAMs). decBAMs are CD11chi and efficient inducers of Tregs, proliferate in situ, and secrete high levels of CXCL1, CXCL5, M-CSF, and IL-10. In contrast, decPAMs exert a dendritic cell-like, motile phenotype characterized by induced expression of HLA class II molecules, enhanced phagocytosis, and the ability to activate T cells. Strikingly, EVT-conditioned media convert decPAMs into a decBAM phenotype. These findings assign distinct macrophage phenotypes to decidual areas depending on placentation and further highlight a critical role for EVTs in the induction of decB-associated macrophage polarization.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
In Immunology and Cell Biology on 1 October 2016 by Rizzo, F., Giacomini, E., et al.
Growing evidences put B lymphocytes on a central stage in multiple sclerosis (MS) immunopathology. While investigating the effects of interferon-β (IFN-β) therapy, one of the most used first-line disease-modifying drugs for the treatment of relapsing-remitting MS, in circulating B-cell sub-populations, we found a specific and marked decrease of CD27+ memory B cells. Interestingly, memory B cells are considered a population with a great disease-driving relevance in MS and resulted to be also target of B-cell depleting therapies. In addition, Epstein-Barr virus (EBV), associated with MS etiopathogenesis, harbors in this cell type and an IFN-β-induced reduction of the memory B-cell compartment, in turn, resulted in a decreased expression of the EBV gene latent membrane protein 2A in treated patients. We found that in vivo IFN-β therapy specifically and highly induced apoptosis in memory B cells, in accordance with a strong increase of the apoptotic markers Annexin-V and active caspase-3, via a mechanism requiring the FAS-receptor/TACI (transmembrane activator and CAML interactor) signaling. Thus, efficacy of IFN-β therapy in MS may rely not only on its recognized anti-inflammatory activities but also on the specific depletion of memory B cells, considered to be a pathogenic cell subset, reducing their inflammatory impact in target organs.
In Immunology on 1 July 2011 by Hardie, D. L., Baldwin, M. J., et al.
CD248 (endosialin) is a transmembrane glycoprotein that is dynamically expressed on pericytes and fibroblasts during tissue development, tumour neovascularization and inflammation. Its role in tissue remodelling is associated with increased stromal cell proliferation and migration. We show that CD248 is also uniquely expressed by human, but not mouse (C57BL/6), CD8(+) naive T cells. CD248 is found only on CD8(+) CCR7(+) CD11a(low) naive T cells and on CD8 single-positive T cells in the thymus. Transfection of the CD248 negative T-cell line MOLT-4 with CD248 cDNA surprisingly reduced cell proliferation. Knock-down of CD248 on naive CD8 T cells increased cell proliferation. These data demonstrate opposing functions for CD248 on haematopoietic (CD8(+)) versus stromal cells and suggests that CD248 helps to maintain naive CD8(+) human T cells in a quiescent state.
© 2011 The Authors. Immunology © 2011 Blackwell Publishing Ltd.
In Leukemia on 1 September 2010 by Carlsten, M., Baumann, B. C., et al.
Myelodysplastic syndromes (MDS) comprise a heterogeneous group of clonal stem-cell disorders characterized by ineffective hematopoiesis and risk of progression to acute myeloid leukemia. Increased apoptosis and suppressed functions of peripheral blood natural killer (NK) cells have been described in MDS patients, but only limited information is available on the phenotypic and functional integrity of NK cells in the bone marrow. In a cohort of 41 patients with distinct clinical subtypes of MDS, we here show that NK cells in the bone marrow show decreased surface expression of the activating receptors DNAM-1 and NKG2D. Notably, decreased receptor expression correlated with elevated bone marrow blast counts and was associated with impaired NK-cell responsiveness to stimulation with the K562 cell line, or co-activation by NKG2D or DNAM-1 in combination with the 2B4 receptor. Furthermore, antibody-masking experiments revealed a central role for DNAM-1 in NK cell-mediated killing of freshly isolated MDS blasts. Thus, given the emerging evidence for NK cell-mediated immune surveillance of neoplastic cells, we speculate that reduced expression of DNAM-1 on bone marrow NK cells may facilitate disease progression in patients with MDS.