In British Journal of Haematology on 1 February 2022 by Tandon, S., Visser, R., et al.
Minor intron retention drives clonal hematopoietic disorders and diverse cancer predisposition.
In Nature Genetics on 1 May 2021 by Inoue, D., Polaski, J. T., et al.
Most eukaryotes harbor two distinct pre-mRNA splicing machineries: the major spliceosome, which removes >99% of introns, and the minor spliceosome, which removes rare, evolutionarily conserved introns. Although hypothesized to serve important regulatory functions, physiologic roles of the minor spliceosome are not well understood. For example, the minor spliceosome component ZRSR2 is subject to recurrent, leukemia-associated mutations, yet functional connections among minor introns, hematopoiesis and cancers are unclear. Here, we identify that impaired minor intron excision via ZRSR2 loss enhances hematopoietic stem cell self-renewal. CRISPR screens mimicking nonsense-mediated decay of minor intron-containing mRNA species converged on LZTR1, a regulator of RAS-related GTPases. LZTR1 minor intron retention was also discovered in the RASopathy Noonan syndrome, due to intronic mutations disrupting splicing and diverse solid tumors. These data uncover minor intron recognition as a regulator of hematopoiesis, noncoding mutations within minor introns as potential cancer drivers and links among ZRSR2 mutations, LZTR1 regulation and leukemias.
Coordinated alterations in RNA splicing and epigenetic regulation drive leukaemogenesis.
In Nature on 1 October 2019 by Yoshimi, A., Lin, K. T., et al.
Transcription and pre-mRNA splicing are key steps in the control of gene expression and mutations in genes regulating each of these processes are common in leukaemia1,2. Despite the frequent overlap of mutations affecting epigenetic regulation and splicing in leukaemia, how these processes influence one another to promote leukaemogenesis is not understood and, to our knowledge, there is no functional evidence that mutations in RNA splicing factors initiate leukaemia. Here, through analyses of transcriptomes from 982 patients with acute myeloid leukaemia, we identified frequent overlap of mutations in IDH2 and SRSF2 that together promote leukaemogenesis through coordinated effects on the epigenome and RNA splicing. Whereas mutations in either IDH2 or SRSF2 imparted distinct splicing changes, co-expression of mutant IDH2 altered the splicing effects of mutant SRSF2 and resulted in more profound splicing changes than either mutation alone. Consistent with this, co-expression of mutant IDH2 and SRSF2 resulted in lethal myelodysplasia with proliferative features in vivo and enhanced self-renewal in a manner not observed with either mutation alone. IDH2 and SRSF2 double-mutant cells exhibited aberrant splicing and reduced expression of INTS3, a member of the integrator complex3, concordant with increased stalling of RNA polymerase II (RNAPII). Aberrant INTS3 splicing contributed to leukaemogenesis in concert with mutant IDH2 and was dependent on mutant SRSF2 binding to cis elements in INTS3 mRNA and increased DNA methylation of INTS3. These data identify a pathogenic crosstalk between altered epigenetic state and splicing in a subset of leukaemias, provide functional evidence that mutations in splicing factors drive myeloid malignancy development, and identify spliceosomal changes as a mediator of IDH2-mutant leukaemogenesis.
In Vox Sanguinis on 1 July 2014 by Liu, J., Samuel, K., et al.
Culture of blood CD34(+) cells with chromatin-modifying agents can lead to an increase in marrow repopulating cells and in the case of valproic acid increased erythroid cell colony formation. We undertook research to help understand what effects these reagents have on mobilized peripheral blood (MPB) CD34(+) cells.
Mobilized peripheral blood was obtained under informed consent and ethics committee approval from nine patients and allograft donors. Epigenetic modifiers valproic acid and 5-aza-2'-deoxycytidine were used singly or in combination with each other and with IL3 when culturing mobilized peripheral blood CD34(+) cells. Cultured cells were subsequently used in flow cytometry and colony-forming unit assay experiments.
Addition of IL3 to the in vitro cell growth medium improved the expansion and maintained the functionality of CD34(+) cells. Valproic acid and IL3 also work synergistically to increase the numbers of CD34(+) /CD36(+) double-positive cells. We found that an apparent increase in red cell colony formation was a result of a decrease in white cell colonies, with no overall increase in red cell colonies when equivalent numbers of CD34(+) cells are plated.
Mobilized peripheral blood CD34(+) stem and progenitor cells are affected by chromatin-modifying agents and IL3 giving higher numbers of CD34(+) /CD36(+) double-positive erythroid progenitors.
© 2014 International Society of Blood Transfusion.
In British Journal of Haematology on 1 June 2009 by Olsnes, A. M., Ersvaer, E., et al.
Acute myeloid leukaemia (AML) cells show constitutive release of several chemokines that occurs in three major clusters: (I) chemokine (C-C motif) ligand (CCL)2-4/chemokine (C-X-C motif) ligand (CXCL)1/8, (II) CCL5/CXCL9-11 and (III) CCL13/17/22/24/CXCL5. Ingenol-3-angelate (PEP005) is an activator of protein kinase C and has antileukaemic and immunostimulatory effects in AML. We investigated primary AML cells derived from 35 unselected patients and determined that PEP005 caused a dose-dependent increase in the release of chemokines from clusters I and II, including several T cell chemotactic chemokines. The release of granulocyte-macrophage colony-stimulating factor and hepatocyte growth factor was also increased. CCL2-4/CXCL1/8 release correlated with nuclear factor (NF)-kappaB expression in untreated AML cells, and PEP005-induced chemokine production was associated with further increases in the expression of the NF-kappaB subunits p50, p52 and p65. Increased DNA binding of NF-kappaB was observed during exposure to PEP005, and the specific NF-kappaB inhibitor BMS-345541 reduced constitutive chemokine release even in the presence of PEP005. Finally, PEP005 decreased expression of stem cell markers (CD117, CXCR4) and increased lineage-associated CD11b and CD14 expression. To conclude, PEP005 has a unique functional pharmacological profile in human AML. Previous studies have described proapoptotic and T cell stimulatory effects and the present study describes additional T cell chemotactic and differentiation-inducing effects.