Product Citations: 21

Osteoarthritis (OA) impacts hundreds of millions of people worldwide, with those affected incurring significant physical and financial burdens. Injuries such as focal defects to the articular surface are a major contributing risk factor for the development of OA. Current cartilage repair strategies are moderately effective at reducing pain but often replace damaged tissue with biomechanically inferior fibrocartilage. Here we describe the development, transcriptomic ontogenetic characterization and quality assessment at the single cell level, as well as the scaled manufacturing of an allogeneic human pluripotent stem cell-derived articular chondrocyte formulation that exhibits long-term functional repair of porcine articular cartilage. These results define a new potential clinical paradigm for articular cartilage repair and mitigation of the associated risk of OA.
© 2021. The Author(s).

  • Stem Cells and Developmental Biology
  • Veterinary Research

Integrated loss- and gain-of-function screens define a core network governing human embryonic stem cell behavior.

In Genes and Development on 1 November 2021 by Naxerova, K., Di Stefano, B., et al.

Understanding the genetic control of human embryonic stem cell function is foundational for developmental biology and regenerative medicine. Here we describe an integrated genome-scale loss- and gain-of-function screening approach to identify genetic networks governing embryonic stem cell proliferation and differentiation into the three germ layers. We identified a deep link between pluripotency maintenance and survival by showing that genetic alterations that cause pluripotency dissolution simultaneously increase apoptosis resistance. We discovered that the chromatin-modifying complex SAGA and in particular its subunit TADA2B are central regulators of pluripotency, survival, growth, and lineage specification. Joint analysis of all screens revealed that genetic alterations that broadly inhibit differentiation across multiple germ layers drive proliferation and survival under pluripotency-maintaining conditions and coincide with known cancer drivers. Our results show the power of integrated multilayer genetic screening for the robust mapping of complex genetic networks.
© 2021 Naxerova et al.; Published by Cold Spring Harbor Laboratory Press.

  • FC/FACS
  • Homo sapiens (Human)
  • Stem Cells and Developmental Biology

Infection and transmission of SARS-CoV-2 depend on heparan sulfate proteoglycans.

In The EMBO Journal on 18 October 2021 by Bermejo-Jambrina, M., Eder, J., et al.

The current pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and outbreaks of new variants highlight the need for preventive treatments. Here, we identified heparan sulfate proteoglycans as attachment receptors for SARS-CoV-2. Notably, neutralizing antibodies against SARS-CoV-2 isolated from COVID-19 patients interfered with SARS-CoV-2 binding to heparan sulfate proteoglycans, which might be an additional mechanism of antibodies to neutralize infection. SARS-CoV-2 binding to and infection of epithelial cells was blocked by low molecular weight heparins (LMWH). Although dendritic cells (DCs) and mucosal Langerhans cells (LCs) were not infected by SARS-CoV-2, both DC subsets efficiently captured SARS-CoV-2 via heparan sulfate proteoglycans and transmitted the virus to ACE2-positive cells. Notably, human primary nasal cells were infected by SARS-CoV-2, and infection was blocked by pre-treatment with LMWH. These data strongly suggest that heparan sulfate proteoglycans are important attachment receptors facilitating infection and transmission, and support the use of LMWH as prophylaxis against SARS-CoV-2 infection.
© 2021 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  • FC/FACS
  • COVID-19
  • Immunology and Microbiology

Influence of Nano, Micro, and Macro Topography of Dental Implant Surfaces on Human Gingival Fibroblasts.

In International Journal of Molecular Sciences on 13 September 2021 by Petrini, M., Pierfelice, T. V., et al.

Current research on dental implants has mainly focused on the influence of surface roughness on the rate of osseointegration, while studies on the development of surfaces to also improve the interaction of peri-implant soft tissues are lacking. To this end, the first purpose of this study was to evaluate the response of human gingival fibroblasts (hGDFs) to titanium implant discs (Implacil De Bortoli, Brazil) having different micro and nano-topography: machined (Ti-M) versus sandblasted/double-etched (Ti-S). The secondary aim was to investigate the effect of the macrogeometry of the discs on cells: linear-like (Ti-L) versus wave-like (Ti-W) surfaces. The atomic force microscopy (AFM) and scanning electron microscopy (SEM) analysis showed that the Ti-S surfaces were characterized by a significantly higher micro and nano roughness and showed the 3D macrotopography of Ti-L and Ti-W surfaces. For in vitro analyses, the hGDFs were seeded into titanium discs and analyzed at 1, 3, and 5 days for adhesion and morphology (SEM) viability and proliferation (Cck-8 and MTT assays). The results showed that all tested surfaces were not cytotoxic for the hGDFs, rather the nano-micro and macro topography favored their proliferation in a time-dependent manner. Especially, at 3 and 5 days, the number of cells on Ti-L was higher than on other surfaces, including Ti-W surfaces. In conclusion, although further studies are needed, our in vitro data proved that the use of implant discs with Ti-S surfaces promotes the adhesion and proliferation of gingival fibroblasts, suggesting their use for in vivo applications.

  • Homo sapiens (Human)

Cytotoxic and Genotoxic Effects of Composite Resins on Cultured Human Gingival Fibroblasts.

In Materials on 11 September 2021 by De Angelis, F., Mandatori, D., et al.

The aim of the study was to evaluate the cytotoxic and genotoxic potential of five commercially available dental composite resins (CRs), investigating the effect of their quantifiable bisphenol-A-glycidyl-methacrylate (Bis-GMA) and/or triethylene glycol dimethacrylate (TEGDMA) release. Experiments were performed using the method of soaking extracts, which were derived from the immersion of the following CRs in the culture medium: Clearfil-Majesty-ES-2, GrandioSO, and Enamel-plus-HRi (Bis-GMA-based); Enamel-BioFunction and VenusDiamond (Bis-GMA-free). Human Gingival Fibroblasts (hGDFs) were employed as the cellular model to mimic in vitro the oral cavity milieu, where CRs simultaneously release various components. Cell metabolic activity, oxidative stress, and genotoxicity were used as cellular outcomes. Results showed that only VenusDiamond and Enamel-plus-HRi significantly affected the hGDF cell metabolic activity. In accordance with this, although no CR-derived extract induced a significantly detectable oxidative stress, only VenusDiamond and Enamel-plus-HRi induced significant genotoxicity. Our findings showed, for the CRs employed, a cytotoxic and genotoxic potential that did not seem to depend only on the actual Bis-GMA or TEGDMA content. Enamel-BioFunction appeared optimal in terms of cytotoxicity, and similar findings were observed for Clearfil-Majesty-ES-2 despite their different Bis-GMA/TEGDMA release patterns. This suggested that simply excluding one specific monomer from the CR formulation might not steadily turn out as a successful approach for improving their biocompatibility.

  • Homo sapiens (Human)
View this product on CiteAb