Product Citations: 4

Comprehensive molecular profiling of multiple myeloma identifies refined copy number and expression subtypes.

In Nature Genetics on 1 September 2024 by Skerget, S., Penaherrera, D., et al.

Multiple myeloma is a treatable, but currently incurable, hematological malignancy of plasma cells characterized by diverse and complex tumor genetics for which precision medicine approaches to treatment are lacking. The Multiple Myeloma Research Foundation's Relating Clinical Outcomes in Multiple Myeloma to Personal Assessment of Genetic Profile study ( NCT01454297 ) is a longitudinal, observational clinical study of newly diagnosed patients with multiple myeloma (n = 1,143) where tumor samples are characterized using whole-genome sequencing, whole-exome sequencing and RNA sequencing at diagnosis and progression, and clinical data are collected every 3 months. Analyses of the baseline cohort identified genes that are the target of recurrent gain-of-function and loss-of-function events. Consensus clustering identified 8 and 12 unique copy number and expression subtypes of myeloma, respectively, identifying high-risk genetic subtypes and elucidating many of the molecular underpinnings of these unique biological groups. Analysis of serial samples showed that 25.5% of patients transition to a high-risk expression subtype at progression. We observed robust expression of immunotherapy targets in this subtype, suggesting a potential therapeutic option.
© 2024. The Author(s).

  • Homo sapiens (Human)
  • Genetics

Genomic Basis of Multiple Myeloma Subtypes from the MMRF CoMMpass Study

Preprint on MedRxiv : the Preprint Server for Health Sciences on 5 August 2021 by Skerget, S., Penaherrera, D., et al.

Multiple myeloma is a treatable, but currently incurable, hematological malignancy of plasma cells characterized by diverse and complex tumor genetics for which precision medicine approaches to treatment are lacking. The MMRF CoMMpass study is a longitudinal, observational clinical study of newly diagnosed multiple myeloma patients where tumor samples are characterized using whole genome, exome, and RNA sequencing at diagnosis and progression, and clinical data is collected every three months. Analyses of the baseline cohort identified genes that are the target of recurrent gain- and loss-of-function events. Consensus clustering identified 8 and 12 unique copy number and expression subtypes of myeloma, respectively, identifying high- risk genetic subtypes and elucidating many of the molecular underpinnings of these unique biological groups. Analysis of serial samples showed 25.5% of patients transition to a high-risk expression subtype at progression. We observed robust expression of immunotherapy targets in this subtype, suggesting a potential therapeutic option.

VASA, also known as DDX4, is reported to be specifically expressed in cells belonging to the germ cell lineage, both in males and females. Therefore, it could be an informative protein biomarker to be applied on semen to differentiate between obstructive and nonobstructive azoospermia (OA and NOA, respectively). In addition, it could be of value to predict sperm retrieval based on testicular sperm extraction. Immunocytochemistry of proven OA semen using both polyclonal and monoclonal antibodies against VASA showed positive staining of both cells and cell sized particles. This is spite of being the absolute negative controls, completely lacking germ lineage derived cells and material. In order to identify the source of the VASA-positive material, a detailed screen of different anatomical parts of the whole male urogenital tract was performed of multiple cases using immunohistochemistry.The polyclonal antibody stained, besides the expected germ cells in the testis, epithelium of the bladder and the seminal vesicles. The monoclonal antibody only stained the latter. To investigate whether the immunohistochemical staining is associated with the presence of the corresponding VASA mRNA, samples of seminal vesicles, bladder, testis, and semen (with and without germ cells) were investigated using the specific quantitative reverse transcription-polymerase chain reaction (qRT-PCR) on 42 samples. A positive result was detected in testis and semen containing germ cells (n = 10 and 8), being negative in semen without germ cells (n = 11), bladder (n = 3), and seminal vesicles (n = 10).Two commercially available VASA antibodies (mono- and polyclonal) are not specific. In contrast, VASA-mRNA evaluation, using qRT-PCR, is specific for the presence of germ cells, therefore, is an interesting molecular biomarker for germ cell detection in semen.

  • Homo sapiens (Human)
  • Genetics

Generation and characterization of human anti-human IL-21 neutralizing monoclonal antibodies.

In MAbs on 14 February 2012 by Maurer, M. F., Garrigues, U., et al.

Interleukin-21 (IL-21) is a type I four-helical bundle cytokine that exerts a variety of significant effects on many hematopoietic cells, including T and B lymphocytes and natural killer cells. IL-21 is produced predominantly by CD4+ T cells and natural killer T cells and, when aberrantly overexpressed, appears to play important roles in a wide variety of autoimmune disorders. To generate potential therapeutic reagents capable of inhibiting IL-21 for clinical use, we immunized human immunoglobulin transgenic mice with IL-21 and then identified and cloned a panel of human anti-human IL-21 binding monoclonal antibodies. IL-21 neutralizing and IL-21-binding, non-neutralizing antibodies were assigned to distinct epitope "bins" based on surface plasmon resonance competition studies. The most potent neutralizing antibodies had extremely high (sub pM) affinity for IL-21 and were able to block IL-21 activity in various biological assays using either an IL-21R-transfected pre-B-cell line or primary human B cells, and their neutralizing activity was, in some cases, superior to that of a soluble form of the high affinity heterodimeric IL-21 receptor. Characterization of this panel of IL-21 antibodies provided the basis for the selection of a therapeutic candidate antibody capable of inhibiting IL-21 activity for the treatment of autoimmune and inflammatory diseases.

View this product on CiteAb