Product Citations: 11

KAT6B is required for histone 3 lysine 9 acetylation and SOX gene expression in the developing brain.

In Life Science Alliance on 1 February 2025 by Bergamasco, M. I., Abeysekera, W., et al.

Heterozygous mutations in the histone lysine acetyltransferase gene KAT6B (MYST4/MORF/QKF) underlie neurodevelopmental disorders, but the mechanistic roles of KAT6B remain poorly understood. Here, we show that loss of KAT6B in embryonic neural stem and progenitor cells (NSPCs) impaired cell proliferation, neuronal differentiation, and neurite outgrowth. Mechanistically, loss of KAT6B resulted in reduced acetylation at histone H3 lysine 9 and reduced expression of key nervous system development genes in NSPCs and the developing cortex, including the SOX gene family, in particular Sox2, which is a key driver of neural progenitor proliferation, multipotency and brain development. In the fetal cortex, KAT6B occupied the Sox2 locus. Loss of KAT6B caused a reduction in Sox2 promoter activity in NSPCs. Sox2 overexpression partially rescued the proliferative defect of Kat6b -/- NSPCs. Collectively, these results elucidate molecular requirements for KAT6B in brain development and identify key KAT6B targets in neural precursor cells and the developing brain.
© 2024 Bergamasco et al.

  • FC/FACS
  • Mus musculus (House mouse)
  • Genetics

Immunotherapy with biologics targeting programmed cell death protein-1 (PD-1) is highly effective in the treatment of various malignancies. Nevertheless, it is frequently responsible for unexpected cutaneous manifestations, including psoriasis-like dermatitis. The pathogenesis of anti-PD-1-induced psoriasis has yet to be clarified, even though it is plausible that some innate and adaptive immunity processes are in common with canonical psoriasis. The genetic predisposition to psoriasis of patients could also be a contributing factor. Here, we investigated the immunological and genetic profiles of two patients with metastatic melanoma and one patient affected by lung cancer, who developed severe psoriasis after receiving anti-PD-1 nivolumab therapy.
The immune patterns of the three patients were compared with those detectable in classical, chronic plaque-type psoriasis or paradoxical psoriasis induced by anti-TNF-α therapy, mostly sustained by adaptive and innate immunity processes, respectively. Therefore, immunohistochemistry and mRNA analyses of innate and adaptive immunity molecules were conducted on skin biopsy of patients. Genetic analysis of polymorphisms predisposing to psoriasis was carried out by NGS technology.
We found that anti-PD-1-induced psoriasis showed immunological features similar to chronic psoriasis, characterized by the presence of cellular players of adaptive immunity, with abundant CD3+, CD8+ T cells and CD11c+ dendritic cells infiltrating skin lesions, and producing IL-23, IL-6, TNF-α, IFN-γ and IL-17. On the contrary, a lower number of innate immunity cells (BDCA2+ plasmacytoid dendritic cells, CD15+ neutrophils, CD117+ mast cells) and reduced IFN-α/β, lymphotoxin (LT)-α/β, were observed in anti-PD-1-induced psoriasis lesions, as compared with anti-TNF-α-induced paradoxical psoriasis. Importantly, the disintegrin and metalloprotease domain containing thrombospondin type 1 motif-like 5 (ADAMTSL5) psoriasis autoantigen was significantly upregulated in psoriasis lesions of anti-PD-1-treated patients, at levels comparable with chronic plaque-type psoriasis. Finally, NGS analysis revealed that all patients carried several allelic variants in psoriasis susceptibility genes, such as HLA-C, ERAP1 and other genes of the major psoriasis susceptibility PSORS1 locus.
Our study showed that adaptive immunity predominates over innate immunity in anti-PD-1-induced psoriasis lesions, consistently with the local ADAMTSL5 overexpression. The presence of numerous SNPs in psoriasis susceptibility genes of the three patients also suggested their strong predisposition to the disease.
Copyright © 2024 Morelli, Carbone, Scaglione, Scarponi, Di Francesco, Pallotta, De Galitiis, Rahimi, Madonna, Failla and Albanesi.

  • Homo sapiens (Human)
  • Immunology and Microbiology

Experimental Methods for the Immunological Characterization of Paradoxical Psoriasis Reactions Induced by TNF-α Biologics.

In Methods in Molecular Biology (Clifton, N.J.) on 14 November 2020 by Morelli, M., Scarponi, C., et al.

Immunomodulation with anti-TNFα biologics is highly effective in the treatment of various immune-mediated inflammatory diseases, even though 2-5% of patients treated can develop paradoxical psoriasiform skin lesions. We recently analyzed three patients affected by severe hidradenite suppurativa (HS), and who developed paradoxical psoriasiform reactions following treatment with the TNF-α blockers. Psoriasiform skin reactions showed immunological and immunohistochemical features common to acute psoriasis, characterized by cellular players of innate immunity, such as plasmacytoid dendritic cells (pDC), neutrophils, mast cells, macrophages, and monocytes. In addition, IFN-β and IFN-α2a, two type I IFNs typical of early psoriasis, were highly expressed in paradoxical skin reactions. Concomitantly, the lymphotoxin (LT)-α and LT-β were overproduced. Detection of innate immunity cells was carried out on skin sections from HS patients, by immunohistochemistry (IHC) by using antibodies (Abs) against markers identifying specific leukocyte subpopulations. Anti-BDCA2, anti-CD15, anti-CD117, anti-CD68, anti-CD11c, and anti-CD3 Abs were employed to detect pDC, neutrophils, mast cells, macrophages, monocytes/dendritic cells, and T lymphocytes, respectively. In parallel, skin expression of the innate immunity soluble mediators IL-36γ, IFN-β, IFN-κ, LT-α and LT-β was also evaluated by IHC by using specific Abs. In this chapter, we describe the methods and protocols to detect the in situ expression and localization of innate immunity molecules and leukocyte subpopulations in skin lesions where inflammatory and psoriasiform reactions are evoked by anti-TNF- α biological therapy.

  • Biochemistry and Molecular biology
  • Immunology and Microbiology

Paradoxical psoriasis induced by TNF-α blockade shows immunological features typical of the early phase of psoriasis development.

In The Journal of Pathology. Clinical Research on 1 January 2020 by Fania, L., Morelli, M., et al.

Immunomodulation with anti-TNF-α is highly effective in the treatment of various immune-mediated inflammatory diseases, including hidradenitis suppurativa (HS). However, this may be responsible for unexpected paradoxical psoriasiform reactions. The pathogenic mechanisms underlying the induction of these events are not clear, even though the involvement of innate immune responses driven by plasmacytoid dendritic cells (pDC) has been described. In addition, the genetic predisposition to psoriasis of patients could be determinant. In this study, we investigated the immunological and genetic profiles of three HS patients without psoriasis who developed paradoxical psoriasiform reactions following anti-TNF-α therapy with adalimumab. We found that paradoxical psoriasiform skin reactions show immunological features common to the early phases of psoriasis development, characterized by cellular players of innate immunity, such as pDC, neutrophils, mast cells, macrophages, and monocytes. In addition, IFN-β and IFN-α2a, two type I IFNs typical of early psoriasis, were highly expressed in paradoxical skin reactions. Concomitantly, other innate immunity molecules, such as the catheledicin LL37 and lymphotoxin (LT)-α and LT-β were overproduced. Interestingly, these innate immunity molecules were abundantly expressed by keratinocytes, in addition to the inflammatory infiltrate. In contrast to classical psoriasis, psoriasiform lesions of HS patients showed a reduced number of IFN-γ and TNF-α-releasing T lymphocytes. On the contrary, IL-22 immunoreactivity was significantly augmented together with the IL-36γ staining in leukocytes infiltrating the dermis. Finally, we found that all HS patients with paradoxical reactions carried allelic variants in genes predisposing to psoriasis. Among them, SNPs in ERAP1, NFKBIZ, and TNFAIP genes and in the HLA-C genomic region were found.
© 2019 The Authors. The Journal of Pathology: Clinical Research published by The Pathological Society of Great Britain and Ireland and John Wiley & Sons Ltd.

  • IHC
  • Homo sapiens (Human)
  • Immunology and Microbiology

Jak2-mediated phosphorylation of Atoh1 is critical for medulloblastoma growth.

In eLife on 23 November 2017 by Klisch, T. J., Vainshtein, A., et al.

Treatment for medulloblastoma, the most common malignant brain tumor in children, remains limited to surgical resection, radiation, and traditional chemotherapy; with long-term survival as low as 50-60% for Sonic Hedgehog (Shh)-type medulloblastoma. We have shown that the transcription factor Atonal homologue 1 (Atoh1) is required for Shh-type medulloblastoma development in mice. To determine whether reducing either Atoh1 levels or activity in tumors after their development is beneficial, we studied Atoh1 dosage and modifications in Shh-type medulloblastoma. Heterozygosity of Atoh1 reduced tumor occurrence and prolonged survival. We discovered tyrosine 78 of Atoh1 is phosphorylated by a Jak2-mediated pathway only in tumor-initiating cells and in human SHH-type medulloblastoma. Phosphorylation of tyrosine 78 stabilizes Atoh1, increases Atoh1's transcriptional activity, and is independent of canonical Jak2 signaling. Importantly, inhibition of Jak2 impairs tyrosine 78 phosphorylation and tumor growth in vivo. Taken together, inhibiting Jak2-mediated tyrosine 78 phosphorylation could provide a viable therapy for medulloblastoma.

View this product on CiteAb