Product Citations: 8

Understanding the Mode of Action of Several Active Ingredients from the Micro-Immunotherapy Medicine 2LZONA®.

In Journal of Inflammation Research on 26 March 2025 by Jacques, C., Marchand, F., et al.

Varicella-zoster virus (VZV) affects over 90% of the global population. The initial encounter with VZV, often in the early years of childhood, results in varicella. From latency, VZV can reactivate in later stages of life, leading to the development of herpes zoster. Considering the importance of host immune responses in preventing reactivation and clinical manifestations associated with VZV infection, a therapy that sustains the immune system could be of great interest.
The present work aimed to set the basis of the possible mode of action of 2LZONA®, a micro-immunotherapy medicine composed of five different capsules. Thus, the effects of several active substances employed in this medicine were assessed in human primary immune-related cells.
Our results showed that DNA (8 CH) and RNA (8 CH), two active substances used in 2LZONA, displayed phagocytosis-enhancing capabilities in granulocytes and contained sub-micron particles that could explain, at least partially, the observed effect. These two active substances tested singularly and together with other actives of 2LZONA's capsules, modulated the proliferation of immature, transitory, and mature subsets of natural killer (NK) cells in an IL-15-like pattern, suggesting an enhancement of their activation levels. Moreover, the tested items of 2LZONA increased the secretion of IL-2, IL-6, IL-13, and TNF-α in human peripheral blood mononuclear cells (PBMCs). Furthermore, the proliferation of PBMCs-derived NK cells, intermediate monocytes, and neutrophils was slightly increased by this treatment. In CD3 and CD3/CD28 pre-primed conditions, actives present in one capsule of 2LZONA enhanced the secretion of IL-6 and TNF-α. Finally, one capsule of 2LZONA reduced the expression of human leukocyte antigen (HLA) in IFN-inflamed endothelial cells. Overall, these data provide, for the first time, preliminary experimental evidence of the mechanisms of action of some of the active ingredients employed in 2LZONA capsules.
© 2025 Jacques et al.

  • Immunology and Microbiology

Tumor-infiltrating lymphocytes (TILs) targeting neoantigens can effectively treat a selected set of metastatic solid cancers. However, harnessing TILs for cancer treatments remains challenging because neoantigen-reactive T cells are often rare and exhausted, and ex vivo expansion can further reduce their frequencies. This complicates the identification of neoantigen-reactive T-cell receptors (TCRs) and the development of TIL products with high reactivity for patient treatment.
We tested whether TILs could be in vitro stimulated against neoantigens to achieve selective expansion of neoantigen-reactive TILs. Given their prevalence, mutant p53 or RAS were studied as models of human neoantigens. An in vitro stimulation method, termed "NeoExpand", was developed to provide neoantigen-specific stimulation to TILs. 25 consecutive patient TILs from tumors harboring p53 or RAS mutations were subjected to NeoExpand.
We show that neoantigenic stimulation achieved selective expansion of neoantigen-reactive TILs and broadened the neoantigen-reactive CD4+ and CD8+ TIL clonal repertoire. This allowed the effective isolation of novel neoantigen-reactive TCRs. Out of the 25 consecutive TIL samples, neoantigenic stimulation enabled the identification of 16 unique reactivities and 42 TCRs, while conventional TIL expansion identified 9 reactivities and 14 TCRs. Single-cell transcriptome analysis revealed that neoantigenic stimulation increased neoantigen-reactive TILs with stem-like memory phenotypes expressing IL-7R, CD62L, and KLF2. Furthermore, neoantigenic stimulation improved the in vivo antitumor efficacy of TILs relative to the conventional OKT3-induced rapid TIL expansion in p53-mutated or KRAS-mutated xenograft mouse models.
Taken together, neoantigenic stimulation of TILs selectively expands neoantigen-reactive TILs by frequencies and by their clonal repertoire. NeoExpand led to improved phenotypes and functions of neoantigen-reactive TILs. Our data warrant its clinical evaluation.
NCT00068003, NCT01174121, and NCT03412877.
© Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

  • Cancer Research

The common non-coding single nucleotide polymorphism (SNP) rs3129882 in HLA-DRA is associated with risk for idiopathic Parkinson's disease (PD). The location of the SNP in the major histocompatibility complex class II (MHC-II) locus implicates regulation of antigen presentation as a potential mechanism by which immune responses link genetic susceptibility to environmental factors in conferring lifetime risk for PD.
For immunophenotyping, blood cells from 81 subjects were analyzed by qRT-PCR and flow cytometry. A case-control study was performed on a separate cohort of 962 subjects to determine association of pesticide exposure and the SNP with risk of PD.
Homozygosity for G at this SNP was associated with heightened baseline expression and inducibility of MHC class II molecules in B cells and monocytes from peripheral blood of healthy controls and PD patients. In addition, exposure to a commonly used class of insecticide, pyrethroids, synergized with the risk conferred by this SNP (OR = 2.48, p = 0.007), thereby identifying a novel gene-environment interaction that promotes risk for PD via alterations in immune responses.
In sum, these novel findings suggest that the MHC-II locus may increase susceptibility to PD through presentation of pathogenic, immunodominant antigens and/or a shift toward a more pro-inflammatory CD4+ T cell response in response to specific environmental exposures, such as pyrethroid exposure through genetic or epigenetic mechanisms that modulate MHC-II gene expression.

  • FC/FACS
  • Homo sapiens (Human)
  • Genetics
  • Neuroscience

Dendritic cell (DC)-mediated cross-presentation of exogenous antigens acquired in the periphery is critical for the initiation of CD8(+) T cell responses. Several DC subsets are described in human tissues but migratory cross-presenting DCs have not been isolated, despite their potential importance in immunity to pathogens, vaccines, and tumors and tolerance to self. Here, we identified a CD141(hi) DC present in human interstitial dermis, liver, and lung that was distinct from the majority of CD1c(+) and CD14(+) tissue DCs and superior at cross-presenting soluble antigens. Cutaneous CD141(hi) DCs were closely related to blood CD141(+) DCs, and migratory counterparts were found among skin-draining lymph node DCs. Comparative transcriptomic analysis with mouse showed tissue DC subsets to be conserved between species and permitted close alignment of human and mouse DC subsets. These studies inform the rational design of targeted immunotherapies and facilitate translation of mouse functional DC biology to the human setting.
Copyright © 2012 Elsevier Inc. All rights reserved.

  • Immunology and Microbiology

Previous studies suggested that transplantation of autologous bone marrow-derived mononuclear cells (BMNCs) improves heart function in chronic chagasic cardiomyopathy. We report the results of the first randomized trial of BMNC therapy in chronic chagasic cardiomyopathy.
Patients 18 to 75 years of age with chronic chagasic cardiomyopathy, New York Heart Association class II to IV heart failure, left ventricular ejection fraction (LVEF) <35, and optimized therapy were randomized to intracoronary injection of autologous BMNCs or placebo. The primary end point was the difference in LVEF from baseline to 6 and 12 months after treatment between groups. Analysis was by intention to treat and powered to detect an absolute between-group difference of 5. Between July 2005 and October 2009, 234 patients were enrolled. Two patients abandoned the study and 49 were excluded because of protocol violation. The remaining 183 patients, 93 in the placebo group and 90 in the BMNC group, had a trimmed mean age of 52.4 years (range, 50.8-54.0 years) and LVEF of 26.1 (range, 25.1-27.1) at baseline. Median number of injected BMNCs was 2.20×10(8) (range, 1.40-3.50×10(8)). Change in LVEF did not differ significantly between treatment groups: trimmed mean change in LVEF at 6 months, 3.0 (1.3-4.8) for BMNCs and 2.5 (0.6-4.5) for placebo (P=0.519); change in LVEF at 12 months, 3.5 (1.5-5.5) for BMNCs and 3.7 (1.5-6.0) for placebo (P=0.850). Left ventricular systolic and diastolic volumes, New York Heart Association functional class, Minnesota quality-of-life questionnaire, brain natriuretic peptide concentrations, and 6-minute walking test did also not differ between groups.
Intracoronary injection of autologous BMNCs does not improve left ventricular function or quality of life in patients with chronic chagasic cardiomyopathy.

  • FC/FACS
  • Homo sapiens (Human)
  • Cardiovascular biology
View this product on CiteAb