Product Citations: 13

Acute myeloid leukemia (AML) is fueled by leukemic stem cells (LSC) whose determinants are challenging to discern from hematopoietic stem cells (HSC) or uncover by approaches focused on general cell properties. We have identified a set of RNA-binding proteins (RBP) selectively enriched in human AML LSCs. Using an in vivo two-step CRISPR-Cas9 screen to assay stem cell functionality, we found 32 RBPs essential for LSCs in MLL-AF9;NrasG12D AML. Loss-of-function approaches targeting key hit RBP ELAVL1 compromised LSC-driven in vivo leukemic reconstitution, and selectively depleted primitive malignant versus healthy cells. Integrative multiomics revealed differentiation, splicing, and mitochondrial metabolism as key features defining the leukemic ELAVL1-mRNA interactome with mitochondrial import protein, TOMM34, being a direct ELAVL1-stabilized target whose repression impairs AML propagation. Altogether, using a stem cell-adapted in vivo CRISPR screen, this work demonstrates pervasive reliance on RBPs as regulators of LSCs and highlights their potential as therapeutic targets in AML.
LSC-targeted therapies remain a significant unmet need in AML. We developed a stem-cell-adapted in vivo CRISPR screen to identify key LSC drivers. We uncover widespread RNA-binding protein dependencies in LSCs, including ELAVL1, which we identify as a novel therapeutic vulnerability through its regulation of mitochondrial metabolism. This article is highlighted in the In This Issue feature, p. 171.
©2023 The Authors; Published by the American Association for Cancer Research.

  • Genetics
  • Stem Cells and Developmental Biology

CIITA promoter polymorphism impairs monocytes HLA-DR expression in patients with septic shock.

In IScience on 18 November 2022 by Miatello, J., Lukaszewicz, A. C., et al.

Low monocyte (m)HLA-DR expression is associated with mortality in sepsis. G-286A∗rs3087456 polymorphism in promoter III of HLA class II transactivator (CIITA), the master regulator of HLA, has been associated with autoimmune diseases but its role in sepsis has never been demonstrated. In 203 patients in septic shock, GG genotype was associated with 28-day mortality and mHLA-DR remained low whereas it increased in patients with AA or AG genotype. In ex vivo cells, mHLA-DR failed to augment in GG in comparison with AG or AA genotype on exposure to IFN-γ. Promoter III transcript levels were similar in control monocytes regardless of genotype and exposure to IFN-γ. Promoter III activity was decreased in GG genotype in monocyte cell line but restored after stimulation with IFN-γ. Hereby, we demonstrated that G-286A∗rs3087456 significantly impact mHLA-DR expression in patients with septic shock in part through CIITA promoter III activity, that can be rescued using IFN-γ.
© 2022 The Authors.

  • Homo sapiens (Human)

After traumatic brain injury (TBI), peripheral monocytes infiltrate into the central nervous system due to disruption of the blood-brain barrier, and play an important role in neuroinflammation. However, the mechanisms regulating the movement and function of peripheral monocytes after TBI have not been fully investigated.
TBI patients who underwent surgery at our hospital were recruited. CXCR2 expression in CD14+ monocytes from peripheral blood and cerebrospinal fluid (CSF) of TBI patients around surgery was analyzed by flow cytometry and compared with that of patients who suffered TBI 2-24 months prior and underwent cranioplasty. In vitro, serum or CSF from TBI/non-TBI patients were used to treat peripheral monocytes isolated from healthy volunteers to evaluate their effect on CXCR2 expression. Transwell experiments were performed to analyze the role of CXCR2 in monocyte chemotaxis toward the CSF. The role of CXCR2 in monocyte-mediated immunogenic cell death (ICD) of nerve cells was explored in an indirect co-culture system.
Transient CXCR2 upregulation in monocytes from the peripheral blood and CSF of TBI patients was detected soon after surgery and was associated with unfavorable outcomes. TBI serum and CSF promoted CXCR2 expression in monocytes, and dexamethasone reversed this effect. Peripheral monocytes from TBI patients showed enhanced chemotaxis toward the CSF and increased inflammatory cytokine secretion. The CXCR2 antagonist SB225002 decreased monocyte chemotaxis toward TBI CSF, and lowered pro-inflammatory cytokine secretion in monocytes treated with TBI serum. SB225002 also relieved ICD in nerve cells co-cultured with TBI serum-treated monocytes.
CXCR2 is transiently overexpressed in the peripheral monocytes of TBI patients post-surgery, and drives peripheral monocyte chemotaxis toward CSF and monocyte-mediated ICD of nerve cells. Therefore, CXCR2 may be a target for monocyte-based therapies for TBI.
© 2022. The Author(s).

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology
  • Neuroscience

Selective killing of human M1 macrophages by Smac mimetics alone and M2 macrophages by Smac mimetics and caspase inhibition.

In Journal of Leukocyte Biology on 1 October 2021 by Ali, H., Caballero, R., et al.

The inflammatory and anti-inflammatory Mϕs have been implicated in many diseases including rheumatoid arthritis, multiple sclerosis, and leprosy. Recent studies suggest targeting Mϕ function and activation may represent a potential target to treat these diseases. Herein, we investigated the effect of second mitochondria-derived activator of caspases (SMAC) mimetics (SMs), the inhibitors of apoptosis (IAPs) proteins, on the killing of human pro- and anti-inflammatory Mϕ subsets. We have shown previously that human monocytes are highly susceptible whereas differentiated Mϕs (M0) are highly resistant to the cytocidal abilities of SMs. To determine whether human Mϕ subsets are resistant to the cytotoxic effects of SMs, we show that M1 Mϕs are highly susceptible to SM-induced cell death whereas M2a, M2b, and M2c differentiated subsets are resistant, with M2c being the most resistant. SM-induced cell death in M1 Mϕs was mediated by apoptosis as well as necroptosis, activated both extrinsic and intrinsic pathways of apoptosis, and was attributed to the IFN-γ-mediated differentiation. In contrast, M2c and M0 Mϕs experienced cell death through necroptosis following simultaneous blockage of the IAPs and the caspase pathways. Overall, the results suggest that survival of human Mϕs is critically linked to the activation of the IAPs pathways. Moreover, agents blocking the cellular IAP1/2 and/or caspases can be exploited therapeutically to address inflammation-related diseases.
©2021 Society for Leukocyte Biology.

  • Immunology and Microbiology

Upregulated expression of leukocyte immunoglobulin-like receptor A3 in patients with severe aplastic anemia.

In Experimental and Therapeutic Medicine on 1 April 2021 by Yu, H., Liu, H., et al.

Severe aplastic anemia (SAA) is a rare and potentially life-threatening disease characterized by pancytopenia and bone marrow (BM) hypoplasia. In a previous study by our group, increased expression of leukocyte immunoglobulin-like receptors A (LILRA), LILRA3 in myeloid dendritic cells (mDCs) and LILRA5 in CD34+ cells in SAA was detected using proteomics techniques, highlighting their potential role in disease pathogenesis. In the present study, the expression of LILRA1-6 mRNA was assessed in the BM mononuclear cells of patients with SAA using reverse transcription-quantitative (RT-q)PCR. The expression of homogenic LILRA3 and LILRA5 isoform on mDCs, as well as CD34+, CD3+CD8+, CD19+ and CD14+ cells, was detected using flow cytometry. mDCs were then induced, cultured and sorted. The expression of LILRA3 was confirmed using RT-qPCR and western blot analyses. The serum levels of soluble LILRA3 were measured using ELISA. Furthermore, the relationship between LILRA3 expression and disease severity was assessed. The results indicated increased LILRA3 mRNA expression in patients with SAA. The percentage of LILRA3+ in BM mDCs and CD34+ cells was increased. Compared with controls, the relative LILRA3 mRNA expression and the relative protein intensity were highly increased in SAA mDCs. The serum LILRA3 levels in patients with SAA were also increased. The proportion of LILRA3+CD11C+ human leukocyte antigen (HLA)-DR+/CD11C+HLA-DR+ cells was positively correlated with the ratio of LILRA3+CD34+/CD34+ cells and the expression of LILRA3 mRNA. Taken together, the expression of LILRA3 on mDCs of patients with SAA was increased, which may affect the function of mDCs. LILRA3 may have a significant role in the immune pathogenesis of SAA.
Copyright: © Yu et al.

  • FC/FACS
  • Homo sapiens (Human)
View this product on CiteAb