Product Citations: 5

Renal cell therapy has shown clinical efficacy in the treatment of acute renal failure (ARF) and promise for treatment of end-stage renal disease (ESRD) by supplementing conventional small solute clearance (hemodialysis or hemofiltration) with endocrine and metabolic function provided by cells maintained in an extracorporeal circuit. A major obstacle in the widespread adoption of this therapeutic approach is the lack of a cryopreservable system to enable distribution, storage, and therapeutic use at point of care facilities. This report details the design, fabrication, and assessment of a Bioartificial Renal Epithelial Cell System (BRECS), the first all-in-one culture vessel, cryostorage device, and cell therapy delivery system. The BRECS was loaded with up to 20 cell-seeded porous disks, which were maintained by perfusion culture. Once cells reached over 5 × 106 cells/disk for a total therapeutic dose of approximately 108 cells, the BRECS was cryopreserved for storage at -80°C or -140°C. The BRECS was rapidly thawed, and perfusion culture was resumed. Near precryopreservation values of cell viability, metabolic activity, and differentiated phenotype of functional renal cells were confirmed post-reconstitution. This technology could be extended to administer other cell-based therapies where metabolic, regulatory, or secretion functions can be leveraged in an immunoisolated extracorporeal circuit.

  • IHC
  • Homo sapiens (Human)

Establishment of a xenograft model of human myelodysplastic syndromes.

In Haematologica on 1 April 2011 by Muguruma, Y., Matsushita, H., et al.

To understand how myelodysplastic syndrome cells evolve from normal stem cells and gain competitive advantages over normal hematopoiesis, we established a murine xenograft model harboring bone marrow cells from patients with myelodysplastic syndromes or acute myeloid leukemia with myelodysplasia-related changes.
Bone marrow CD34(+) cells obtained from patients were injected, with or without human mesenchymal stem cells, into the bone marrow of non-obese diabetic/severe combined immunodeficient/IL2Rγ(null) hosts. Engraftment and differentiation of cells derived from the patients were investigated by flow cytometry and immunohistochemical analysis.
Co-injection of patients' cells and human mesenchymal stem cells led to successful engraftment of patient-derived cells that maintained the immunophenotypes and genomic abnormalities of the original patients. Myelodysplastic syndrome-originated clones differentiated into mature neutrophils, megakaryocytes, and erythroblasts. Two of the samples derived from patients with acute myeloid leukemia with myelodysplasia-related changes were able to sustain neoplastic growth into the next generation while these cells had limited differentiation ability in the murine host. The hematopoiesis of mice engrafted with patients' cells was significantly suppressed even when human cells accounted for less than 1% of total marrow mononuclear cells. Histological studies revealed invasion of the endosteal surface by patient-derived CD34(+) cells and disruption of extracellular matrix architecture, which probably caused inhibition of murine hematopoiesis.
We established murine models of human myelodysplastic syndromes using cells obtained from patients: the presence of neoplastic cells was associated with the suppression of normal host hematopoiesis. The efficiency of engraftment was related to the presence of an abnormality in chromosome 7.

  • Cardiovascular biology

HLA-DR expression on monocytes as a marker for the functioning of the immune system is known to be severely depressed in immunodeficiency. Up to now, other markers for the function of the immune system are scarce. In the peripheral blood of patients with open heart surgery the expression of the membrane peptidases neprilysin/CD10 and aminopeptidase N/CD13, was determined on granulocytes in comparison to the monocytic HLA-DR expression. We used the QuantiBRITE flow cytometry system, which yields an absolute antigen expression value (antibodies bound per cell) and may be useful in standardizing surface antigen expression analysis. This system makes use of a highly purified phycoerythrin-labeled antibody with a 1:1 fluorochrome-to-protein ratio, and multilevel calibrated beads with known absolute phycoerythrin fluorescence. Our results show that both membrane peptidases on granulocytes show a similar time-course of expression after heart surgery as do HLA-DR molecules on monocytes, with a decrease from days one to three and a subsequent recovery to normal values. In future analyses a possible relationship between the immunodeficiency of patients and a diminished expression of both membrane peptidases on granulocytes has to be investigated.

  • Biochemistry and Molecular biology
  • Immunology and Microbiology

Both oncoretroviral and lentiviral vectors have been shown to transduce CD34(+) human hematopoietic stem cells (HSC) capable of establishing human hematopoiesis in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice that support partially human hematopoiesis. We and others have reported that murine stem cell virus (MSCV)-based oncoretroviral vectors efficiently transduced HSC that had been cultured ex vivo for 4-7 days with cytokines, resulting in transgene expression in lymphoid and myeloid progenies of SCID-engrafting cells 4-8 weeks post-transplantation. Although lentiviral vectors have been demonstrated to transduce HSC under minimal ex vivo culture conditions, concerns exist regarding the level of transgene expression mediated by these vectors. We therefore evaluated a novel hybrid lentiviral vector (GIN-MU3), in which the U3 region of the HIV-1 long terminal repeat was replaced by the MSCV U3 region (MU3). Human cord blood CD34(+) cells were transduced with vesicular stomatitis virus G envelope protein-pseudotyped lentiviruses during a 48-hour culture period. After a total of 4 days in culture, transduced cells were transplanted into NOD/SCID mice to examine gene transfer and expression in engrafting human cells. Fifteen weeks post-transplantation, 37% +/- 12% of engrafted human cells expressed the green fluorescence protein (GFP) gene introduced by the lentiviral vector. High levels of GFP expression were observed in lymphoid, myeloid and erythroid progenies, and in engrafted human cells that retained the CD34(+) phenotype 15 weeks post-transplantation. This study provides evidence that lentiviral vectors transduced both short-term and long-term engrafting human cells, and mediated persistent transgene expression at high levels in multiple lineages of hematopoietic cells.

  • Stem Cells and Developmental Biology

Selective transgene expression for detection and elimination of contaminating carcinoma cells in hematopoietic stem cell sources.

In The Journal of Clinical Investigation on 1 December 1996 by Chen, L., Pulsipher, M., et al.

Tumor contamination of bone marrow (BM) and peripheral blood (PB) may affect the outcome of patients receiving high dose chemotherapy with autologous transplantation of hematopoietic stem cell products. In this report, we demonstrate that replication defective adenoviral vectors containing the cytomegalovirus (CMV) or DF3/MUC1 carcinoma-selective promoter can be used to selectively transduce contaminating carcinoma cells. Adenoviral-mediated reporter gene expression in breast cancer cells was five orders of magnitude higher than that found in BM, PB, and CD34+ cells. Our results demonstrate that CD34+ cells have low to undetectable levels of integrins responsible for adenoviral internalization. We show that adenoviral-mediated transduction of a reporter gene can detect one breast cancer cell in 5 x 10(5) BM or PB cells with a vector containing the DF3/MUC1 promoter. We also show that transduction of the HSV-tk gene for selective killing by ganciclovir can be exploited for purging cancer cells from hematopoietic stem cell populations. The selective expression of TK followed by ganciclovir treatment resulted in the elimination of 6-logs of contaminating cancer cells. By contrast, there was little effect on CFU-GM and BFU-E formulation or on long term culture initiating cells. These results indicate that adenoviral vectors with a tumor-selective promoter provide a highly efficient and effective approach for the detection and purging of carcinoma cells in hematopoietic stem cell preparations.

  • Cancer Research
  • Stem Cells and Developmental Biology
View this product on CiteAb