Product Citations: 4

The lytic polysaccharide monooxygenase CbpD promotes Pseudomonas aeruginosa virulence in systemic infection.

In Nature Communications on 23 February 2021 by Askarian, F., Uchiyama, S., et al.

The recently discovered lytic polysaccharide monooxygenases (LPMOs), which cleave polysaccharides by oxidation, have been associated with bacterial virulence, but supporting functional data is scarce. Here we show that CbpD, the LPMO of Pseudomonas aeruginosa, is a chitin-oxidizing virulence factor that promotes survival of the bacterium in human blood. The catalytic activity of CbpD was promoted by azurin and pyocyanin, two redox-active virulence factors also secreted by P. aeruginosa. Homology modeling, molecular dynamics simulations, and small angle X-ray scattering indicated that CbpD is a monomeric tri-modular enzyme with flexible linkers. Deletion of cbpD rendered P. aeruginosa unable to establish a lethal systemic infection, associated with enhanced bacterial clearance in vivo. CbpD-dependent survival of the wild-type bacterium was not attributable to dampening of pro-inflammatory responses by CbpD ex vivo or in vivo. Rather, we found that CbpD attenuates the terminal complement cascade in human serum. Studies with an active site mutant of CbpD indicated that catalytic activity is crucial for virulence function. Finally, profiling of the bacterial and splenic proteomes showed that the lack of this single enzyme resulted in substantial re-organization of the bacterial and host proteomes. LPMOs similar to CbpD occur in other pathogens and may have similar immune evasive functions.

  • FC/FACS
  • Immunology and Microbiology

Diapedesis is a dynamic, highly regulated process by which leukocytes are recruited to inflammatory sites. We reported previously that removal of sialyl residues from PMNs enables these cells to become more adherent to EC monolayers and that sialidase activity within intracellular compartments of resting PMNs translocates to the plasma membrane following activation. We did not identify which surface adhesion molecules were targeted by endogenous sialidase. Upon activation, β2 integrin (CD11b/CD18) on the PMN surface undergoes conformational change, which allows it to bind more tightly to the ICAM-1 and ICAM-2 on the EC surface. Removal of sialyl residues from CD18 and CD11b, by exogenous neuraminidase or mobilization of PMN sialidase, unmasked activation epitopes, as detected by flow cytometry and enhanced binding to ICAM-1. One sialidase isoform, Neu1, colocalized with CD18 on confocal microscopy. Using an autoperfused microflow chamber, desialylation of immobilized ICAM-1 enhanced leukocyte arrest in vivo. Further, treatment with a sialidase inhibitor in vivo reversed endotoxin-induced binding of leukocytes to ICAM-1, thereby suggesting a role for leukocyte sialidase in the cellular arrest. These data suggest that PMN sialidase could be a physiologic source of the enzymatic activity that removes sialyl residues on β2 integrin and ICAM-1, resulting in their enhanced interaction. Thus, PMN sialidase may be an important regulator of the recruitment of these cells to inflamed sites.

  • Immunology and Microbiology

Type 2 diabetes is a major risk factor for cardiovascular disease. Monocyte recruitment and inflammatory activation are crucial steps in the development of atherosclerosis and several receptors are involved in these processes. The aim of this study was to investigate levels of CD14 and the beta(2)-integrin subunits CD11b and CD18 on monocytes from women with diabetes or impaired glucose tolerance.
A population-based sample of 112 Swedish women, who were aged 64 years and had diabetes mellitus or impaired or normal glucose tolerance, was investigated. Cell surface receptors were analysed with flow cytometry and serum inflammation markers and soluble adhesion molecules with enzyme-linked methods.
The monocytic CD14 expression and serum levels of C-reactive protein, IL-6 and soluble adhesion molecules were higher in the diabetes group than in the group with normal glucose tolerance. Monocytic CD18 was elevated both in the diabetes and in the impaired glucose tolerance groups. The levels of monocytic surface markers correlated with BMI and to a lesser extent with glycaemic control.
The increased monocytic expression of important surface receptors together with elevated serum inflammation markers supports the concept of increased inflammation in type 2 diabetes and may be an important factor for the risk of atherosclerosis.

  • Immunology and Microbiology

We investigated the phenotypic changes of human umbilical cord blood (CB) CD34+ cells during ex vivo expansion using thrombopoietin (TPO), flt3-ligand (FL), and/or granulocyte-colony stimulating factor (G-CSF). During ex vivo expansion of CD34+ cells isolated from human CB for up to 5 weeks, surface expression of molecules on the cultured cells including CD64 (Fc gammaRI), CD32 (Fc gammaRII), CD16 (Fc gammaRII), CD11b (MAC-1) and CD18 (beta2-integrin) was analysed by flow cytometry along with simultaneous measurement of apoptosis by 7-aminoactinomycin D staining method. CD64, CD32 and/or CD18 expressing cells appeared in the cultures both with and without the addition of G-CSF until the tenth day. However, without G-CSF, CD16+ fractions did not appear and CD11b+ fractions were not maintained. With G-CSF, the CD16+ or CD11b+ fractions appeared only from the second week. These results suggest that G-CSF is necessary for the late stage of myeloid maturation during which CD16 and CD11b are expressed.

  • Cardiovascular biology
View this product on CiteAb