Product Citations: 35

Disease Tolerance Acquired Through RepeatedPlasmodiumInfection Involves Epigenetic Reprogramming of Innate Immune Cells

Preprint on BioRxiv : the Preprint Server for Biology on 21 April 2023 by Nideffer, J., Ty, M., et al.

Summary The regulation of inflammation is a critical aspect of disease tolerance and naturally acquired immunity to malaria. Here, we demonstrate using RNA sequencing and epigenetic landscape profiling by cytometry by Time-Of-Flight (EpiTOF), that the regulation of inflammatory pathways during asymptomatic parasitemia occurs downstream of pathogen sensing—at the epigenetic level. The abundance of certain epigenetic markers (methylation of H3K27 and dimethylation of arginine residues) and decreased prevalence of histone variant H3.3 correlated with suppressed cytokine responses among monocytes of Ugandan children. Such an epigenetic signature was observed across diverse immune cell populations and not only characterized active asymptomatic parasitemia but also predicted long-term future disease tolerance when observed in uninfected children. This broad methylated signature likely develops gradually and was associated with age and recent parasite exposure. Our data support a model whereby exposure to Plasmodium falciparum induces epigenetic changes that regulate excessive inflammation and contribute to naturally acquired immunity to malaria.

  • Genetics
  • Immunology and Microbiology

Systematic detection of m6A-modified transcripts at single-molecule and single-cell resolution.

In Cell Rep Methods on 27 September 2021 by Kim, K. L., van Galen, P., et al.

Epigenetic modifications control the stability and translation of mRNA molecules. Here, we present a microscopy-based platform for quantifying modified RNA molecules and for relating the modification patterns to single-cell phenotypes. We directly capture mRNAs from cell lysates on oligo-dT-coated coverslips, then visually detect and sequence individual m6A-immunolabled transcripts without amplification. Integration of a nanoscale device enabled us to isolate single cells on the platform, and thereby relate single-cell m6A modification states to gene expression signatures and cell surface markers. Application of the platform to MUTZ3 leukemia cells revealed a marked reduction in cellular m6A levels as CD34+ leukemic progenitors differentiate to CD14+ myeloid cells. We then coupled single-molecule m6A detection with fluorescence in situ hybridization (FISH) to relate mRNA and m6A levels of individual genes to single-cell phenotypes. This single-cell multi-modal assay suite can empower investigations of RNA modifications in rare populations and single cells.

  • Homo sapiens (Human)

Emerging evidence indicates a fundamental role for the epigenome in immunity. Here, we mapped the epigenomic and transcriptional landscape of immunity to influenza vaccination in humans at the single-cell level. Vaccination against seasonal influenza induced persistently diminished H3K27ac in monocytes and myeloid dendritic cells (mDCs), which was associated with impaired cytokine responses to Toll-like receptor stimulation. Single-cell ATAC-seq analysis revealed an epigenomically distinct subcluster of monocytes with reduced chromatin accessibility at AP-1-targeted loci after vaccination. Similar effects were observed in response to vaccination with the AS03-adjuvanted H5N1 pandemic influenza vaccine. However, this vaccine also stimulated persistently increased chromatin accessibility at interferon response factor (IRF) loci in monocytes and mDCs. This was associated with elevated expression of antiviral genes and heightened resistance to the unrelated Zika and Dengue viruses. These results demonstrate that vaccination stimulates persistent epigenomic remodeling of the innate immune system and reveal AS03's potential as an epigenetic adjuvant.
Copyright © 2021 Elsevier Inc. All rights reserved.

  • FC/FACS
  • Homo sapiens (Human)
  • Biochemistry and Molecular biology
  • Immunology and Microbiology

Proerythroblast Cells of Diamond-Blackfan Anemia Patients With RPS19 and CECR1 Mutations Have Similar Transcriptomic Signature.

In Frontiers in Physiology on 29 June 2021 by Karaosmanoğlu, B., Kursunel, M. A., et al.

Diamond Blackfan Anemia (DBA) is an inherited bone marrow (BM) failure syndrome, characterized by a paucity of erythroid differentiation. DBA is mainly caused by the mutations in ribosomal protein genes, hence classified as ribosomopathy. However, in approximately 30% of patients, the molecular etiology cannot be discovered. RPS19 germline mutations caused 25% of the cases. On the other hand, CECR1 mutations also cause phenotypes similar to DBA but not being a ribosomopathy. Due to the blockade of erythropoiesis in the BM, we investigated the transcriptomic profile of three different cell types of BM resident cells of DBA patients and compared them with healthy donors. From BM aspirates BM mononuclear cells (MNCs) were isolated and hematopoietic stem cells (HSC) [CD71-CD34+ CD38mo/lo], megakaryocyte-erythroid progenitor cells (MEP) [CD71-CD34+ CD38hi] and Proerythroblasts [CD71+ CD117+ CD38+] were sorted and analyzed with a transcriptomic approach. Among all these cells, proerythroblasts had the most different transcriptomic profile. The genes associated with cellular stress/immune responses were increased and some of the transcription factors that play a role in erythroid differentiation had altered expression in DBA proerythroblasts. We also showed that gene expression levels of ribosomal proteins were decreased in DBA proerythroblasts. In addition to these, colony formation assay (CFU-E) provided functional evidence of the failure of erythroid differentiation in DBA patients. According to our findings that all patients resembling both RPS19 and CECR1 mutations have common transcriptomic signatures, it may be possible that inflammatory BM niche may have a role in DBA pathogenesis.
Copyright © 2021 Karaosmanoglu, Kursunel, Uckan Cetinkaya, Gumruk, Esendagli, Unal and Taskiran.

  • Endocrinology and Physiology

The introduction of BCR-ABL tyrosine kinase inhibitors has revolutionized the treatment of chronic myeloid leukemia (CML). A major clinical aim remains the identification and elimination of low-level disease persistence, termed "minimal residual disease". The phenomenon of disease persistence suggests that despite targeted therapeutic approaches, BCR-ABL-independent mechanisms exist which sustain the survival of leukemic stem cells (LSCs). Although other markers of a primitive CML LSC population have been identified in the preclinical setting, only CD26 appears to offer clinical utility. Here we demonstrate consistent and selective expression of CD93 on a lin-CD34+CD38-CD90+ CML LSC population and show in vitro and in vivo data to suggest increased stem cell characteristics, as well as robust engraftment in patient-derived xenograft models in comparison with a CD93- CML stem/progenitor cell population, which fails to engraft. Through bulk and single-cell analyses of selected stem cell and cell survival-specific genes, we confirmed the quiescent character and demonstrate their persistence in a population of CML patient samples who demonstrate molecular relapse on TKI withdrawal. Taken together, our results identify that CD93 is consistently and selectively expressed on a lin-CD34+CD38-CD90+ CML LSC population with stem cell characteristics and may be an important indicator in determining poor TKI responders.

  • Cancer Research
  • Stem Cells and Developmental Biology
View this product on CiteAb