Summary The regulation of inflammation is a critical aspect of disease tolerance and naturally acquired immunity to malaria. Here, we demonstrate using RNA sequencing and epigenetic landscape profiling by cytometry by Time-Of-Flight (EpiTOF), that the regulation of inflammatory pathways during asymptomatic parasitemia occurs downstream of pathogen sensing—at the epigenetic level. The abundance of certain epigenetic markers (methylation of H3K27 and dimethylation of arginine residues) and decreased prevalence of histone variant H3.3 correlated with suppressed cytokine responses among monocytes of Ugandan children. Such an epigenetic signature was observed across diverse immune cell populations and not only characterized active asymptomatic parasitemia but also predicted long-term future disease tolerance when observed in uninfected children. This broad methylated signature likely develops gradually and was associated with age and recent parasite exposure. Our data support a model whereby exposure to Plasmodium falciparum induces epigenetic changes that regulate excessive inflammation and contribute to naturally acquired immunity to malaria.