Product Citations: 13

Unexplained recurrent spontaneous abortion (URSA) is believed to be associated with impaired immunosuppression at the maternal-fetal interface, but the detailed molecular mechanism remains unclear. The ATP-adenosine metabolic pathway regulated by CD39/CD73 has recently been recognized to be important in immunosuppression. This study aimed to investigate the regulation of decidual natural killer (dNK) cells and fetal extravillous trophoblast (EVT) cells by CD39 and CD73 in URSA, as well as the possible regulatory mechanism of CD39/CD73 via the TGF-β-mTOR-HIF-1α pathway using clinical samples and cell models. Fewer CD39+ and CD73+ cells were found in the URSA decidual and villous tissue, respectively. Inhibition of CD39 on dNK cells transformed the cells to an activated state with increased toxicity and decreased apoptosis, and changed their cytokine secretion, leading to impaired invasion and proliferation of the co-cultured HTR8/SVneo cells. Similarly, inhibition of CD73 on HTR8/SVneo cells decreased the adenosine concentration in the cell culture media, increased the proportion of CD107a+ dNK cells, and decreased the invasion and proliferation capabilities of the HTR8/SVneo cells. In addition, transforming growth factor-β (TGF-β) triggered phosphorylation of mammalian target of rapamycin (mTOR) and Smad2/Smad3, which subsequently activated hypoxia-inducible factor-1α (HIF-1α) to induce the CD73 expression on the HTR8/SVneo cells. In summary, reduced numbers of CD39+ and CD73+ cells at the maternal-fetal interface, which may be due to downregulated TGF-β-mTOR-HIF-1α pathway, results in reduced ATP-adenosine metabolism and increased dNK cytotoxicity, and potentially contributes to URSA occurrences.
Copyright © 2022 Zhu, Song, Zhou, Han, Yu, Chen, Mansell, Novakovic, Baker, Cannon, Saffery, Chen and Zhang.

  • FC/FACS
  • Homo sapiens (Human)
  • Biochemistry and Molecular biology
  • Cell Biology
  • Genetics
  • Immunology and Microbiology

Targeting the Temporal Dynamics of Hypoxia-Induced Tumor-Secreted Factors Halts Tumor Migration.

In Cancer Research on 1 June 2019 by Singh, M., Tian, X. J., et al.

Targeting microenvironmental factors that foster migratory cell phenotypes is a promising strategy for halting tumor migration. However, lack of mechanistic understanding of the emergence of migratory phenotypes impedes pharmaceutical drug development. Using our three-dimensional microtumor model with tight control over tumor size, we recapitulated the tumor size-induced hypoxic microenvironment and emergence of migratory phenotypes in microtumors from epithelial breast cells and patient-derived primary metastatic breast cancer cells, mesothelioma cells, and lung cancer xenograft cells. The microtumor models from various patient-derived tumor cells and patient-derived xenograft cells revealed upregulation of tumor-secreted factors, including matrix metalloproteinase-9 (MMP9), fibronectin (FN), and soluble E-cadherin, consistent with clinically reported elevated levels of FN and MMP9 in patient breast tumors compared with healthy mammary glands. Secreted factors in the conditioned media of large microtumors induced a migratory phenotype in nonhypoxic, nonmigratory small microtumors. Subsequent mathematical analyses identified a two-stage microtumor progression and migration mechanism whereby hypoxia induces a migratory phenotype in the initialization stage, which then becomes self-sustained through a positive feedback loop established among the tumor-secreted factors. Computational and experimental studies showed that inhibition of tumor-secreted factors effectively halts microtumor migration despite tumor-to-tumor variation in migration kinetics, while inhibition of hypoxia is effective only within a time window and is compromised by tumor-to-tumor variation, supporting our notion that hypoxia initiates migratory phenotypes but does not sustain it. In summary, we show that targeting temporal dynamics of evolving microenvironments, especially tumor-secreted factors during tumor progression, can halt tumor migration. SIGNIFICANCE: This study uses state-of-the-art three-dimensional microtumor models and computational approaches to highlight the temporal dynamics of tumor-secreted microenvironmental factors in inducing tumor migration.
©2019 American Association for Cancer Research.

  • FC/FACS
  • Homo sapiens (Human)
  • Cancer Research

Proteomic Profiling of Native Unpassaged and Culture-Expanded Mesenchymal Stromal Cells (MSC).

In Cytometry. Part A : the Journal of the International Society for Analytical Cytology on 1 July 2018 by Moravcikova, E., Meyer, E. M., et al.

Human culture-expanded mesenchymal stromal cells (MSC) are being considered for multiple therapeutic applications because of their regenerative and anti-inflammatory properties. Although a large number of MSC can be propagated from a small initial sample, several lines of evidence indicate that MSC lose their immunosuppressive and regenerative potency aftaer multiple passages. In this report, we use the FACSCAP Lyoplate proteomic analysis system to detect changes in cell surface protein expression of CD45- /CD31- /CD34- /CD73+ /CD105+ stromal cells in unpassaged bone marrow (BM) and through 10 serial culture passages. We provide for the first time a detailed characterization of native unpassaged BM MSC (0.08% of BM mononuclear cells) as well as the changes that occur during the initial expansion. Adipogenic and osteogenic differentiative potential was determined though the serial passages and correlated with immunophenotypic changes and senescence. Among the most prominent were striking decreases in Fas ligand, CD98, CD205, and CD106, accompanied by a gain in the expression of CD49c, CD63, CD98, and class 1 and class 2 major histocompatibility complex (MHC) molecules. Other molecules that are down-modulated with later passage include CD24, CD54, CD59, CD243/P-glycoprotein, and CD273/PD-L2. Early senescence, as defined by the loss of replicative capacity occurring with the loss of differentiative capacity, increase in CDKN2A p16, and increased time to confluence, was accompanied by loss of the motility-associated metalloproteinase CD10 and the proliferation-associated transferrin receptor CD71. Among the strongest statistical associations were loss of MAC-inhibitory protein/CD59, loss of ICAM-1/CD54, and increase in CDKN2A as a function of increasing passage, as well as increased CD10 expression with adipogenic and osteogenic capacities. The data provide a clear set of markers that can be used to assess MSC quality. We suggest that clinically relevant numbers of highly functional low passage MSC can be manufactured starting with large quantities of BM, which are readily available from cadaveric organ donors.
© 2018 International Society for Advancement of Cytometry.

  • FC/FACS

Antibody-based cell-surface proteome profiling of metastatic breast cancer primary explants and cell lines.

In Cytometry. Part A : the Journal of the International Society for Analytical Cytology on 1 April 2018 by Donnenberg, V. S., Zhang, J. J., et al.

Flow cytometric cell surface proteomics provides a new and powerful tool to determine changes accompanying neoplastic transformation and invasion, providing clues to essential interactions with the microenvironment as well as leads for potential therapeutic targets. One of the most important advantages of flow cytometric cell surface proteomics is that it can be performed on living cells that can be sorted for further characterization and functional studies. Here, we document the surface proteome of clonogenic metastatic breast cancer (MBrCa) explants, which was strikingly similar to that of normal mesenchymal stromal cells (P = 0.017, associated with Pearson correlation coefficient) and transformed mammary epithelial cells (P = 0.022). Markers specifically upregulated on MBrCa included CD200 (Ox2), CD51/CD61 (Integrin α5/β3), CD26 (dipeptidyl peptidase-4), CD165 (c-Cbl), and CD54 (ICAM-1). Proteins progressively upregulated in a model of neoplastic transformation and invasion included CD26, CD63 (LAMP3), CD105 (Endoglin), CD107a (LAMP1), CD108 (Semaphorin 7A), CD109 (Integrin β4), CD151 (Raph blood group), and disialoganglioside G2. The proteome of the commonly used cell lines MDA-MB-231, MCF7, and BT-474 were uncorrelated with that of MBrCa (P = 1.0, 1.0, 0.9, respectively). The comparison has demonstrated the mesenchymal nature of clonogenic cells isolated by short-term culture of metastatic breast cancer, provided several leads for biomarkers and potential targets for anti-invasive therapy, including CD200, and highlighted the limitations of breast cancer cell lines for representing the cell surface biology of breast cancer. © 2017 International Society for Advancement of Cytometry.
© 2018 International Society for Advancement of Cytometry.

  • Cancer Research

Targeting temporal dynamics of microenvironmental factors halts tumor migration and alleviates effects of dynamic tumor heterogeneity

Preprint on BioRxiv : the Preprint Server for Biology on 20 September 2017 by Singh, M., Tian, X., et al.

h4>Summary/h4> Targeting microenvironmental factors that foster migratory cell phenotypes is a promising strategy for halting tumor migration. However, lack of mechanistic understanding of the process impedes pharmaceutical drug development. Using a novel 3D microtumor model with tight control over tumor size, we recapitulated tumor size-induced hypoxic microenvironment and emergence of migratory phenotypes in epithelial T47D breast microtumors as well as those of patient-derived primary metastatic breast cancer cells, mesothelioma cells and lung cancer xenograft cells (PDX). The microtumor models from various patient-derived tumor cells and PDX cells revealed upregulation of tumor secretome, matrix metalloproteinase-9 (MMP9), fibronectin (FN), and soluble E-cadherin (sE-CAD) consistent with the clinically reported elevated levels of FN and MMP9 in the patient breast tumors compared to healthy mammary gland. We further showed that the tumor secretome induces migratory phenotype in non-hypoxic, non-migratory small microtumors. Subsequent mathematical model analysis identified a two-stage microtumor progression and migration mechanism, i.e., hypoxia induces migratory phenotype in the early initialization stage, which then becomes self-sustained through positive feedback loop established among the secretome. Both computational and experimental studies showed that inhibition of tumor secretome effectively halts microtumor migration despite tumor heterogeneity, while inhibition of the hypoxia is effective only within a time window and is compromised by tumor-to-tumor variation of the growth dynamics, supporting our notion that hypoxia initiates migratory phenotypes but does not sustain it. In summary, we show that targeting temporal dynamics of evolving microenvironments during tumor progression can halt and bypass major hurdle of tumor heterogeneity.

  • Cancer Research
View this product on CiteAb