Product Citations: 16

1 image found

Immunotherapy has been successful in treating advanced melanoma, but a large proportion of patients do not respond to the treatment with immune checkpoint inhibitors (ICIs). Preclinical and small cohort studies suggest gastrointestinal microbiome composition and exosomal mRNA expression of PD-L1 and IFNγ from the primary tumor, stool and body fluids as potential biomarkers for response.
Patients treated with immune checkpoint inhibitors as a first line treatment for metastatic melanoma are recruted to this prospective study. Stool samples are submitted before the start of treatment, at the 12th (+/-2) week and 28th (+/-2) week, and at the occurrence of event (suspected disease progression/hyperprogression, immune-related adverse event (irAE), deterioration). Peripheral venous blood samples are taken additionally at the same time points for cytologic and molecular tests. Histological material from the tumor tissue is obtained before the start of immunotherapy treatment. Primary objectives are to determine whether the human gastrointestinal microbiome (bacterial and viral) and the exosomal mRNA expression of PD-L1 and IFNγ and its dynamics predicts the response to treatment with PD-1 and CTLA-4 inhibitors and its association with the occurrence of irAE. The response is evaluated radiologically with imaging methods in accordance with the irRECIST criteria.
This is the first study to combine and investigate multiple potential predictive and prognostic biomarkers and their dynamics in first line ICI in metastatic melanoma patients.

  • Cancer Research
  • Genetics
  • Immunology and Microbiology

Life-threatening viral disease in a novel form of autosomal recessive IFNAR2 deficiency in the Arctic.

In The Journal of Experimental Medicine on 6 June 2022 by Duncan, C. J. A., Skouboe, M. K., et al.

Type I interferons (IFN-I) play a critical role in human antiviral immunity, as demonstrated by the exceptionally rare deleterious variants of IFNAR1 or IFNAR2. We investigated five children from Greenland, Canada, and Alaska presenting with viral diseases, including life-threatening COVID-19 or influenza, in addition to meningoencephalitis and/or hemophagocytic lymphohistiocytosis following live-attenuated viral vaccination. The affected individuals bore the same homozygous IFNAR2 c.157T>C, p.Ser53Pro missense variant. Although absent from reference databases, p.Ser53Pro occurred with a minor allele frequency of 0.034 in their Inuit ancestry. The serine to proline substitution prevented cell surface expression of IFNAR2 protein, small amounts of which persisted intracellularly in an aberrantly glycosylated state. Cells exclusively expressing the p.Ser53Pro variant lacked responses to recombinant IFN-I and displayed heightened vulnerability to multiple viruses in vitro-a phenotype rescued by wild-type IFNAR2 complementation. This novel form of autosomal recessive IFNAR2 deficiency reinforces the essential role of IFN-I in viral immunity. Further studies are warranted to assess the need for population screening.
© 2022 Duncan et al.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology

DNA methylation-independent long-term epigenetic silencing with dCRISPR/Cas9 fusion proteins.

In Life Science Alliance on 1 June 2022 by Ding, L., Schmitt, L. T., et al.

The programmable CRISPR/Cas9 DNA nuclease is a versatile genome editing tool, but it requires the host cell DNA repair machinery to alter genomic sequences. This fact leads to unpredictable changes of the genome at the cut sites. Genome editing tools that can alter the genome without causing DNA double-strand breaks are therefore in high demand. Here, we show that expression of promoter-associated short guide (sg)RNAs together with dead Cas9 (dCas9) fused to a Krüppel-associated box domains (KRABd) in combination with the transcription repression domain of methyl CpG-binding protein 2 (MeCP2) can lead to persistent gene silencing in mouse embryonic stem cells and in human embryonic kidney (HEK) 293 cells. Surprisingly, this effect is achievable and even enhanced in DNA (cytosine-5)-methyltransferase 3A and 3B (Dnmt3A-/-, Dnmt3b-/-) depleted cells. Our results suggest that dCas9-KRABd-MeCP2 fusions are useful for long-term epigenetic gene silencing with utility in cell biology and potentially in therapeutical settings.
© 2022 Ding et al.

  • Genetics

Cerebrospinal fluid (CSF) flow cytometry has a crucial role in the diagnosis of leptomeningeal disease in onco-hematology. This report describes the flow cytometry characterization of 138 CSF samples from patients affected by non-Hodgkin lymphoma, negative for disease infiltration. The aim was to focus on the CSF non-neoplastic population, to compare the cellular composition of the CSF with paired peripheral blood samples and to document the feasibility of flow cytometry in hypocellular samples. Despite the extremely low cell count (1 cell/µl, range 1.0-35) the study was successfully conducted in 95% of the samples. T lymphocytes were the most abundant subset in CSF (77%; range 20-100%) with a predominance of CD4-positive over CD8-positive T cells (CD4/CD8 ratio = 2) together with a minority of monocytes (15%; range 0-70%). No B cells were identified in 90% of samples. Of relevance, a normal, non-clonal B-cell population was documented in 5/7 (71%) patients with primary central nervous system lymphoma at diagnosis (p<0.0001), suggesting a possible involvement of blood-brain barrier cell permeability in the pathogenesis of cerebral B-cell lymphomas. The highly significant differences between CSF and paired peripheral blood lymphoid phenotype (p<0.0001) confirms the existence of an active mechanism of lymphoid migration through the meninges.
Copyright © 2021 Cordone, Masi, Giannarelli, Pasquale, Conti, Telera, Pace, Papa, Marino, de Fabritiis and Mengarelli.

  • FC/FACS
  • Homo sapiens (Human)
  • Cancer Research
  • Cardiovascular biology
  • Neuroscience

Type 17 immunity promotes the exhaustion of CD8+ T cells in cancer.

In Journal for Immunotherapy of Cancer on 1 June 2021 by Kim, B. S., Kuen, D. S., et al.

Multiple types of immune cells producing IL-17 are found in the tumor microenvironment. However, their roles in tumor progression and exhaustion of CD8+ tumor-infiltrating lymphocytes (TILs) remain unclear.
To determine the role of type 17 immunity in tumor, we investigated the growth of B16F10 melanoma and the exhaustion of CD8+ TILs in Il17a-/- mice, Il17aCreR26DTA mice, RORγt inhibitor-treated mice, or their respective control mice. Adoptive transfer of tumor-specific IL-17-producing T cells was performed in B16F10-bearing congenic mice. Anti-CD4 or anti-Ly6G antibodies were used to deplete CD4+ T cells or CD11b+Gr-1hi myeloid cells in vivo, respectively. Correlation between type 17 immunity and T cell exhaustion in human cancer was evaluated by interrogating TCGA dataset.
Depletion of CD4+ T cells promotes the exhaustion of CD8+ T cells with a concomitant increase in IL-17-producing CD8+ T (Tc17) cells in the tumor. Unlike IFN-γ-producing CD8+ T (Tc1) cells, tumor-infiltrating Tc17 cells exhibit CD103+KLRG1-IL-7Rαhi tissue resident memory-like phenotypes and are poorly cytolytic. Adoptive transfer of IL-17-producing tumor-specific T cells increases, while depletion of IL-17-producing cells decreases, the frequency of PD-1hiTim3+TOX+ terminally exhausted CD8+ T cells in the tumor. Blockade of IL-17 or RORγt pathway inhibits exhaustion of CD8+ T cells and also delays tumor growth in vivo. Consistent with these results, human TCGA analyses reveal a strong positive correlation between type 17 and CD8+ T cell exhaustion signature gene sets in multiple cancers.
IL-17-producing cells promote terminal exhaustion of CD8+ T cells and tumor progression in vivo, which can be reversed by blockade of IL-17 or RORγt pathway. These findings unveil a novel role for IL-17-producing cells as tumor-promoting cells facilitating CD8+ T cell exhaustion, and propose type 17 immunity as a promising target for cancer immunotherapy.
© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

  • Cancer Research
  • Immunology and Microbiology
View this product on CiteAb