Product Citations: 10

Autologous endothelialisation by the stromal vascular fraction on laminin-bioconjugated nanocellulose-alginate scaffolds.

In Biomedical Materials (Bristol, England) on 26 June 2023 by Oskarsdotter, K., Säljö, K., et al.

Establishing a vascular network in biofabricated tissue grafts is essential for ensuring graft survival. Such networks are dependent on the ability of the scaffold material to facilitate endothelial cell adhesion; however, the clinical translation potential of tissue-engineered scaffolds is hindered by the lack of available autologous sources of vascular cells. Here, we present a novel approach to achieving autologous endothelialisation in nanocellulose-based scaffolds by using adipose tissue-derived vascular cells on nanocellulose-based scaffolds. We used sodium periodate-mediated bioconjugation to covalently bind laminin to the scaffold surface and isolated the stromal vascular fraction and endothelial progenitor cells (EPCs; CD31+CD45-) from human lipoaspirate. Additionally, we assessed the adhesive capacity of scaffold bioconjugationin vitrousing both adipose tissue-derived cell populations and human umbilical vein endothelial cells. The results showed that the bioconjugated scaffold exhibited remarkably higher cell viability and scaffold surface coverage by adhesion regardless of cell type, whereas control groups comprising cells on non-bioconjugated scaffolds exhibited minimal cell adhesion across all cell types. Furthermore, on culture day 3, EPCs seeded on laminin-bioconjugated scaffolds showed positive immunofluorescence staining for the endothelial markers CD31 and CD34, suggesting that the scaffolds promoted progenitor differentiation into mature endothelial cells. These findings present a possible strategy for generating autologous vasculature and thereby increase the clinical relevance of 3D-bioprinted nanocellulose-based constructs.
Creative Commons Attribution license.

  • Homo sapiens (Human)

Label-free testing strategy to evaluate packed red blood cell quality before transfusion to leukemia patients.

In Scientific Reports on 17 December 2022 by Dybas, J., Wajda, A., et al.

Patients worldwide require therapeutic transfusions of packed red blood cells (pRBCs), which is applied to the high-risk patients who need periodic transfusions due to leukemia, lymphoma, myeloma and other blood diseases or disorders. Contrary to the general hospital population where the transfusions are carried out mainly for healthy trauma patients, in case of high-risk patients the proper quality of pRBCs is crucial. This leads to an increased demand for efficient technology providing information on the pRBCs alterations deteriorating their quality. Here we present the design of an innovative, label-free, noninvasive, rapid Raman spectroscopy-based method for pRBCs quality evaluation, starting with the description of sample measurement and data analysis, through correlation of spectroscopic results with reference techniques' outcomes, and finishing with methodology verification and its application in clinical conditions. We have shown that Raman spectra collected from the pRBCs supernatant mixture with a proper chemometric analysis conducted for a minimum one ratio of integral intensities of the chosen Raman marker bands within the spectrum allow evaluation of the pRBC quality in a rapid, noninvasive, and free-label manner, without unsealing the pRBCs bag. Subsequently, spectroscopic data were compared with predefined reference values, either from pRBCs expiration or those defining the pRBCs quality, allowing to assess their utility for transfusion to patients with acute myeloid leukemia (AML) and lymphoblastic leukemia (ALL).
© 2022. The Author(s).

  • Homo sapiens (Human)
  • Cancer Research
  • Cardiovascular biology

Sex-dependent membranopathy in stored human red blood cells.

In Haematologica on 1 October 2021 by Szczesny-Malysiak, E., Mohaissen, T., et al.

Not available.

  • Cardiovascular biology

BAR-Seq clonal tracking of gene-edited cells.

In Nature Protocols on 1 June 2021 by Ferrari, S., Beretta, S., et al.

Gene editing by engineered nucleases has revolutionized the field of gene therapy by enabling targeted and precise modification of the genome. However, the limited availability of methods for clonal tracking of edited cells has resulted in a paucity of information on the diversity, abundance and behavior of engineered clones. Here we detail the wet laboratory and bioinformatic BAR-Seq pipeline, a strategy for clonal tracking of cells harboring homology-directed targeted integration of a barcoding cassette. We present the BAR-Seq web application, an online, freely available and easy-to-use software that allows performing clonal tracking analyses on raw sequencing data without any computational resources or advanced bioinformatic skills. BAR-Seq can be applied to most editing strategies, and we describe its use to investigate the clonal dynamics of human edited hematopoietic stem/progenitor cells in xenotransplanted hosts. Notably, BAR-Seq may be applied in both basic and translational research contexts to investigate the biology of edited cells and stringently compare editing protocols at a clonal level. Our BAR-Seq pipeline allows library preparation and validation in a few days and clonal analyses of edited cell populations in 1 week.

Expression of NK Cell Receptor Ligands on Leukemic Cells Is Associated with the Outcome of Childhood Acute Leukemia.

In Cancers on 11 May 2021 by Martínez-Sánchez, M. V., Fuster, J. L., et al.

Acute leukemia is the most common malignancy in children. Most patients are cured, but refractory/relapsed AML and ALL are the first cause of death from malignancy in children. Maintenance chemotherapy in ALL has improved survival by inducing leukemic cell apoptosis, but immune surveillance effectors such as NK cells might also contribute. The outcome of B-ALL (n = 70), T-ALL (n = 16), and AML (n = 16) pediatric patients was evaluated according to leukemic cell expression of ligands for activating and inhibiting receptors that regulate NK cell functioning. Increased expression of ULBP-1, a ligand for NKG2D, but not that of CD112 or CD155, ligands for DNAM-1, was associated with poorer 5-year event-free survival (5y-EFS, 77.6% vs. 94.9%, p < 0.03). Reduced expression of HLA-C on leukemic cells in patients with the KIR2DL1/HLA-C*04 interaction was associated with a higher rate of relapse (17.6% vs. 4.4%, p = 0.035) and lower 5y-EFS (70.6% vs. 92.6%, p < 0.002). KIR2DL1/HLA-C*04 interaction was an independent predictive factor of events (HR = 4.795, p < 0.005) or death (HR = 6.731, p < 0.005) and might provide additional information to the current risk stratification. Children who carry the KIR2DL1/HLA-C*04 interaction were refractory to current chemotherapy treatments, including allogeneic stem cell transplantation; therefore, they should be considered as candidates for alternative biological therapies that might offer better results.

  • Homo sapiens (Human)
  • Cancer Research
View this product on CiteAb