Product citations: 18

Powered by

Antibody-dependent enhancement of toxicity of myotoxin II from Bothrops asper.

In Nature Communications on 16 January 2024 by Sørensen, C. V., Fernández, J., et al.

Improved therapies are needed against snakebite envenoming, which kills and permanently disables thousands of people each year. Recently developed neutralizing monoclonal antibodies against several snake toxins have shown promise in preclinical rodent models. Here, we use phage display technology to discover a human monoclonal antibody and show that this antibody causes antibody-dependent enhancement of toxicity (ADET) of myotoxin II from the venomous pit viper, Bothrops asper, in a mouse model of envenoming that mimics a snakebite. While clinical ADET related to snake venom has not yet been reported in humans, this report of ADET of a toxin from the animal kingdom highlights the necessity of assessing even well-known antibody formats in representative preclinical models to evaluate their therapeutic utility against toxins or venoms. This is essential to avoid potential deleterious effects as exemplified in the present study.
© 2024. The Author(s).

Antibodies with cross-reactive binding and broad toxin-neutralizing capabilities are advantageous for treating indications such as infectious diseases and animal envenomings. Such antibodies have been successfully selected against closely related antigens using phage display technology. However, the mechanisms driving antibody cross-reactivity typically remain to be elucidated. Therefore, we sought to explore how a previously reported phage display-based cross-panning strategy drives the selection of cross-reactive antibodies using seven different snake toxins belonging to three protein (sub-)families: phospholipases A2, long-chain α-neurotoxins, and short-chain α-neurotoxins. We showcase how cross-panning can increase the chances of discovering cross-reactive single-chain variable fragments (scFvs) from phage display campaigns. Further, we find that the feasibility of discovering cross-reactive antibodies using cross-panning cannot easily be predicted by analyzing the sequence, structural, or surface similarity of the antigens alone. However, when antigens share the (exact) same functions, this seems to increase the chances of selecting cross-reactive antibodies, which may possibly be due to the existence of structurally similar motifs on the antigens.
© 2023. The Author(s).

Each HACEK group pathogen, which can cause infective endocarditis, expresses type IVa pili. The type IVa major pilin PilA plays a role in bacterial colonization, virulence, twitching motility, and the uptake of extracellular DNA. The type IV prepilin homolog PilA of the periodontal pathogen A. actinomycetemcomitans (AaPilA) is linked to DNA uptake and natural competence. Our aim was to investigate the virulence properties and immunogenic potential of AaPilA. Since Neisseria meningitidis PilE, which shares sequence similarity with AaPilA, participates in sequestering host cytokines, we examined the ability of AaPilA to interact with various cytokines. Moreover, we investigated the structural characteristics of AaPilA with molecular modeling. AaPilA was conserved among A. actinomycetemcomitans strains. One of the 18 different natural variants, PilAD7S, is present in naturally competent strains. This variant interacted with DNA and bound interleukin (IL)-8 and tumor necrosis factor (TNF)-α. Specific anti-AaPilA antibodies were present in A. actinomycetemcomitans-positive periodontitis patient sera, and the production of reactive oxygen species from human neutrophils was less effectively induced by the ΔpilA mutant than by the wild-type strains. However, AaPilA did not stimulate human macrophages to produce proinflammatory cytokines, nor was it cytotoxic. The results strengthen our earlier hypothesis that the DNA uptake machinery of A. actinomycetemcomitans is involved in the sequestration of inflammatory cytokines. Furthermore, AaPilA stimulates host immune cells, such as B cells and neutrophils, making it a potential virulence factor.
Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.

In vitro discovery of a human monoclonal antibody that neutralizes lethality of cobra snake venom.

In MAbs on 15 June 2022 by Ledsgaard, L., Laustsen, A. H., et al.

The monocled cobra (Naja kaouthia) is among the most feared snakes in Southeast Asia due to its toxicity, which is predominantly derived from long-chain α-neurotoxins. The only specific treatment for snakebite envenoming is antivenom based on animal-derived polyclonal antibodies. Despite the lifesaving importance of these medicines, major limitations in safety, supply consistency, and efficacy create a need for improved treatments. Here, we describe the discovery and subsequent optimization of a recombinant human monoclonal immunoglobulin G antibody against α-cobratoxin using phage display technology. Affinity maturation by light chain-shuffling resulted in a significant increase in in vitro neutralization potency and in vivo efficacy. The optimized antibody prevented lethality when incubated with N. kaouthia whole venom prior to intravenous injection. This study is the first to demonstrate neutralization of whole snake venom by a single recombinant monoclonal antibody, thus providing a tantalizing prospect of bringing recombinant antivenoms based on human monoclonal or oligoclonal antibodies to the clinic.

In vitro discovery and optimization of a human monoclonal antibody that neutralizes neurotoxicity and lethality of cobra snake venom

Preprint on BioRxiv : the Preprint Server for Biology on 7 September 2021 by Ledsgaard, L., Laustsen, A. H., et al.

The monocled cobra ( Naja kaouthia ) is one of the most feared snakes in Southeast Asia. It is a highly dangerous species with a potent venom deriving its toxicity predominantly from abundant long-chain α-neurotoxins. The only specific treatment for snakebite envenoming is antivenom, which is based on animal-derived polyclonal antibodies. Despite the lifesaving importance of these medicines over the past 120 years, and their ongoing role in combating snakebite disease, major limitations in safety, supply consistency, and efficacy creates a need for a new generation of improved treatments based on modern biotechnological techniques. Here, we describe the initial discovery and subsequent optimization of a recombinant human monoclonal immunoglobin G (IgG) antibody against α-cobratoxin using phage display technology. Affinity maturation of the parental antibody by light chain-shuffling resulted in an 8-fold increase in affinity, translating to a significant increase in in vitro neutralization potency and in vivo efficacy. While the parental antibody prolonged survival of mice challenged with purified α-cobratoxin, the optimized antibody prevented lethality when incubated with N. kaouthia whole venom prior to intravenous injection. This study is the first to demonstrate neutralization of whole snake venom by a single recombinant monoclonal antibody. Importantly, this suggests that for venoms whose toxicity relies on a single predominant toxin group, such as that of N. kaouthia , as little as one monoclonal antibody may be sufficient to prevent lethality, thus providing a tantalizing prospect of bringing recombinant antivenoms based on human monoclonal or oligoclonal antibodies to the clinic. h4>One Sentence Summary/h4> A recombinant human monoclonal immunoglobulin G antibody, discovered and optimized using in vitro methods, was demonstrated to neutralize the lethal effect of whole venom from the monocled cobra in mice via abrogation of α-neurotoxin-mediated neurotoxicity.

View this product on CiteAb