Product Citations: 6

Powered by

Applications

IHC
WB

Reactivity

Mus musculus (House mouse)

Research Area

Immunology and Microbiology
Cardiovascular biology
Biochemistry and Molecular biology

4 images found

Multiple myeloma (MM) patients are often refractory to targeted therapies including proteasome inhibitors. Here, analysis of RNA sequencing data derived from 672 patients with newly diagnosed or relapsed/refractory disease identified the acid ceramidase, ASAH1, as a key regulator of resistance to proteasome inhibitors. Genetic or pharmacological blockade of ASAH1 remarkably restored sensitivity to proteasome inhibitors and protected mice from resistant MM progression in vivo. Mechanistically, ASAH1 depletion of ceramide promoted SET inhibition of PP2A phosphatase activity, thus facilitating increased expression and activity of the pro-survival proteins, MCL-1 and BCL-2. We corroborated these findings in human MM datasets, and in ex vivo patients' MM cells. These preclinical studies suggest that ASAH1 may be a potential therapeutic target for the treatment of relapsed/refractory MM.

  • Cardiovascular biology

Interferon regulatory factor 8 regulates expression of acid ceramidase and infection susceptibility in cystic fibrosis.

In The Journal of Biological Chemistry on 12 April 2021 by Gardner, A. I., Wu, Y., et al.

Most patients with cystic fibrosis (CF) suffer from acute and chronic pulmonary infections with bacterial pathogens, which often determine their life quality and expectancy. Previous studies have demonstrated a downregulation of the acid ceramidase in CF epithelial cells resulting in an increase of ceramide and a decrease of sphingosine. Sphingosine kills many bacterial pathogens, and the downregulation of sphingosine seems to determine the infection susceptibility of cystic fibrosis mice and patients. It is presently unknown how deficiency of the cystic fibrosis transmembrane conductance regulator (CFTR) connects to a marked downregulation of the acid ceramidase in human and murine CF epithelial cells. Here, we employed quantitative PCR, western blot analysis, and enzyme activity measurements to study the role of IRF8 for acid ceramidase regulation. We report that genetic deficiency or functional inhibition of CFTR/Cftr results in an upregulation of interferon regulatory factor 8 (IRF8) and a concomitant downregulation of acid ceramidase expression with CF and an increase of ceramide and a reduction of sphingosine levels in tracheal and bronchial epithelial cells from both human individuals or mice. CRISPR/Cas9- or siRNA-mediated downregulation of IRF8 prevented changes of acid ceramidase, ceramide, and sphingosine in CF epithelial cells and restored resistance to Pseudomonas aeruginosa infections, which is one of the most important and common pathogens in lung infection of patients with CF. These studies indicate that CFTR deficiency causes a downregulation of acid ceramidase via upregulation of IRF8, which is a central pathway to control infection susceptibility of CF cells.
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.

  • IHC
  • Biochemistry and Molecular biology
  • Immunology and Microbiology

Acid Ceramidase Rescues Cystic Fibrosis Mice from Pulmonary Infections.

In Infection and Immunity on 19 January 2021 by Becker, K. A., Verhaegh, R., et al.

Previous studies have shown that sphingosine kills a variety of pathogenic bacteria, including Pseudomonas aeruginosa and Staphylococcus aureus Sphingosine concentrations are decreased in airway epithelial cells of cystic fibrosis (CF) mice, and this defect has been linked to the infection susceptibility of these mice. Here, we tested whether the genetic overexpression of acid ceramidase rescues cystic fibrosis mice from pulmonary infections with P. aeruginosa We demonstrate that the transgenic overexpression of acid ceramidase in CF mice corresponds to the overexpression of acid ceramidase in bronchial and tracheal epithelial cells and normalizes ceramide and sphingosine levels in bronchial and tracheal epithelial cells. In addition, the expression of β1-integrin, which is ectopically expressed on the luminal surface of airway epithelial cells in cystic fibrosis mice, an alteration that is very important for mediating pulmonary P. aeruginosa infections in cystic fibrosis, is normalized in cystic fibrosis airways upon the overexpression of acid ceramidase. Most importantly, the overexpression of acid ceramidase protects cystic fibrosis mice from pulmonary P. aeruginosa infections. Infection of CF mice or CF mice that inhaled sphingosine with P. aeruginosa or a P. aeruginosa mutant that is resistant to sphingosine indicates that sphingosine and not a metabolite kills P. aeruginosa upon pulmonary infection. These studies further support the use of acid ceramidase and its metabolite sphingosine as potential treatments of cystic fibrosis.
Copyright © 2021 Becker et al.

  • IHC
  • Mus musculus (House mouse)
  • Cardiovascular biology
  • Immunology and Microbiology

Characterization of the small molecule ARC39, a direct and specific inhibitor of acid sphingomyelinase in vitro.

In Journal of Lipid Research on 1 June 2020 by Naser, E., Kadow, S., et al.

Inhibition of acid sphingomyelinase (ASM), a lysosomal enzyme that catalyzes the hydrolysis of sphingomyelin into ceramide and phosphorylcholine, may serve as an investigational tool or a therapeutic intervention to control many diseases. Specific ASM inhibitors are currently not sufficiently characterized. Here, we found that 1-aminodecylidene bis-phosphonic acid (ARC39) specifically and efficiently (>90%) inhibits both lysosomal and secretory ASM in vitro. Results from investigating sphingomyelin phosphodiesterase 1 (SMPD1/Smpd1) mRNA and ASM protein levels suggested that ARC39 directly inhibits ASM's catalytic activity in cultured cells, a mechanism that differs from that of functional inhibitors of ASM. We further provide evidence that ARC39 dose- and time-dependently inhibits lysosomal ASM in intact cells, and we show that ARC39 also reduces platelet- and ASM-promoted adhesion of tumor cells. The observed toxicity of ARC39 is low at concentrations relevant for ASM inhibition in vitro, and it does not strongly alter the lysosomal compartment or induce phospholipidosis in vitro. When applied intraperitoneally in vivo, even subtoxic high doses administered short-term induced sphingomyelin accumulation only locally in the peritoneal lavage without significant accumulation in plasma, liver, spleen, or brain. These findings require further investigation with other possible chemical modifications. In conclusion, our results indicate that ARC39 potently and selectively inhibits ASM in vitro and highlight the need for developing compounds that can reach tissue concentrations sufficient for ASM inhibition in vivo.
Copyright © 2020 Naser et al. Published by The American Society for Biochemistry and Molecular Biology, Inc.

  • WB

Macrophages have important protective functions during infection with herpes simplex virus type 1 (HSV-1). However, molecular mechanisms that restrict viral propagation and protect from severe disease are unclear. Here we show that macrophages take up HSV-1 via endocytosis and transport the virions into multivesicular bodies (MVBs). In MVBs, acid ceramidase (aCDase) converts ceramide into sphingosine and increases the formation of sphingosine-rich intraluminal vesicles (ILVs). Once HSV-1 particles reach MVBs, sphingosine-rich ILVs bind to HSV-1 particles, which restricts fusion with the limiting endosomal membrane and prevents cellular infection. Lack of aCDase in macrophage cultures or in Asah1-/- mice results in replication of HSV-1 and Asah1-/- mice die soon after systemic or intravaginal inoculation. The treatment of macrophages with sphingosine enhancing compounds blocks HSV-1 propagation, suggesting a therapeutic potential of this pathway. In conclusion, aCDase loads ILVs with sphingosine, which prevents HSV-1 capsids from penetrating into the cytosol.

  • WB
  • IHC
  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb