Product Citations: 3

Powered by

Oxidized linoleic acid metabolites regulate neuronal morphogenesis in vitro.

In Neurochemistry International on 1 March 2023 by da Costa Souza, F., Grodzki, A. C. G., et al.

Linoleic acid (LA, 18:2n-6) is an essential nutrient for optimal infant growth and brain development. The effects of LA in the brain are thought to be mediated by oxygenated metabolites of LA known as oxidized LA metabolites (OXLAMs), but evidence is lacking to directly support this hypothesis. This study investigated whether OXLAMs modulate key neurodevelopmental processes including axon outgrowth, dendritic arborization, cell viability and synaptic connectivity. Primary cortical neuron-glia co-cultures from postnatal day 0-1 male and female rats were exposed for 48h to the following OXLAMs: 1) 13-hydroxyoctadecadienoic acid (13-HODE); 2) 9-hydroxyoctadecadienoic acid (9-HODE); 3) 9,10-dihydroxyoctadecenoic acid (9,10-DiHOME); 4) 12(13)-epoxyoctadecenoic acid (12(13)-EpOME); 5) 9,10,13-trihydroxyoctadecenoic acid (9,10,13-TriHOME); 6) 9-oxo-octadecadienoic acid (9-OxoODE); and 7) 12,13-dihydroxyoctadecenoic acid (12,13-DiHOME). Axonal outgrowth, evaluated by Tau-1 immunostaining, was increased by 9-HODE, but decreased by 12,13-DiHOME in male but not female neurons. Dendrite arborization, evaluated by MAP2B-eGFP expression, was affected by 9-HODE, 9-OxoODE, and 12(13)-EpOME in male neurons and, by 12(13)-EpOME in female neurons. Neither cell viability nor synaptic connectivity were significantly altered by OXLAMs. Overall, this study shows select OXLAMs modulate neuron morphology in a sex-dependent manner, with male neurons being more susceptible.
Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.

Bioactive lipids, including oxylipins, endocannabinoids, and related compounds may function as specific biochemical markers of certain aspects of inflammation. However, the postprandial responsiveness of these compounds is largely unknown; therefore, changes in the circulating oxylipin and endocannabinoid metabolome in response to a challenge meal were investigated at six occasions in a subject who freely modified her usual diet. The dietary change, and especially the challenge meal itself, represented a modification of precursor fatty acid status, with expectedly subtle effects on bioactive lipid levels. To detect even the slightest alteration, highly sensitive ultra-performance liquid chromatography (UPLC) coupled to electrospray ionization (ESI) tandem mass spectrometry (MS/MS) methods for bioactive lipid profiling was employed. A previously validated UPLC-ESI-MS/MS method for profiling the endocannabinoid metabolome was used, while validation of an UPLC-ESI-MS/MS method for oxylipin analysis was performed with acceptable outcomes for a majority of the parameters according to the US Food and Drug Administration guidelines for linearity (0.9938 < R2 < 0.9996), limit of detection (0.0005-2.1 pg on column), limit of quantification (0.0005-4.2 pg on column), inter- and intraday accuracy (85-115%) and precision (< 5%), recovery (40-109%) and stability (40-105%). Forty-seven of fifty-two bioactive lipids were detected in plasma samples at fasting and in the postprandial state (0.5, 1, and 3 hours after the meal). Multivariate analysis showed a significant shift of bioactive lipid profiles in the postprandial state due to inclusion of dairy products in the diet, which was in line with univariate analysis revealing seven compounds (NAGly, 9-HODE, 13-oxo-ODE, 9(10)-EpOME, 12(13)-EpOME, 20-HETE, and 11,12-DHET) that were significantly different between background diets in the postprandial state (but not at fasting). The only change in baseline levels at fasting was displayed by TXB2. Furthermore, postprandial responsiveness was detected for seven compounds (POEA, SEA, 9(10)-DiHOME, 12(13)-DiHOME, 13-oxo-ODE, 9-HODE, and 13-HODE). Hence, the data confirm that the UPLC-ESI-MS/MS method performance was sufficient to detect i) a shift, in the current case most notably in the postprandial bioactive lipid metabolome, caused by changes in diet and ii) responsiveness to a challenge meal for a subset of the oxylipin and endocannabinoid metabolome. To summarize, we have shown proof-of-concept of our UPLC-ESI-MS/MS bioactive lipid protocols for the purpose of monitoring subtle shifts, and thereby useful to address lipid-mediated postprandial inflammation.

Rotenone is a toxicant believed to contribute to the development of Parkinson's disease.
Using human peripheral blood lymphocytes we demonstrated that exposure to rotenone resulted in disruption of electron transport accompanied by the production of reactive oxygen species, development of apoptosis and elevation of peroxidase activity of mitochondria. Employing LC/MS-based lipidomics/oxidative lipidomics we characterized molecular species of cardiolipin (CL) and its oxidation/hydrolysis products formed early in apoptosis and associated with the rotenone-induced mitochondrial dysfunction.
The major oxidized CL species - tetra-linoleoyl-CL - underwent oxidation to yield epoxy-C18:2 and dihydroxy-C18:2 derivatives predominantly localized in sn-1 and sn-2 positions, respectively. In addition, accumulation of mono-lyso-CL species and oxygenated free C18:2 were detected in rotenone-treated lymphocytes. These oxidation/hydrolysis products may be useful for the development of new biomarkers of mitochondrial dysfunction.
© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

View this product on CiteAb