Product Citations: 9

Co-transplantation of autologous Treg cells in a cell therapy for Parkinson's disease.

In Nature on 1 July 2023 by Park, T. Y., Jeon, J., et al.

The specific loss of midbrain dopamine neurons (mDANs) causes major motor dysfunction in Parkinson's disease, which makes cell replacement a promising therapeutic approach1-4. However, poor survival of grafted mDANs remains an obstacle to successful clinical outcomes5-8. Here we show that the surgical procedure itself (referred to here as 'needle trauma') triggers a profound host response that is characterized by acute neuroinflammation, robust infiltration of peripheral immune cells and brain cell death. When midbrain dopamine (mDA) cells derived from human induced pluripotent stem (iPS) cells were transplanted into the rodent striatum, less than 10% of implanted tyrosine hydroxylase (TH)+ mDANs survived at two weeks after transplantation. By contrast, TH- grafted cells mostly survived. Notably, transplantation of autologous regulatory T (Treg) cells greatly modified the response to needle trauma, suppressing acute neuroinflammation and immune cell infiltration. Furthermore, intra-striatal co-transplantation of Treg cells and human-iPS-cell-derived mDA cells significantly protected grafted mDANs from needle-trauma-associated death and improved therapeutic outcomes in rodent models of Parkinson's disease with 6-hydroxydopamine lesions. Co-transplantation with Treg cells also suppressed the undesirable proliferation of TH- grafted cells, resulting in more compact grafts with a higher proportion and higher absolute numbers of TH+ neurons. Together, these data emphasize the importance of the initial inflammatory response to surgical injury in the differential survival of cellular components of the graft, and suggest that co-transplanting autologous Treg cells effectively reduces the needle-trauma-induced death of mDANs, providing a potential strategy to achieve better clinical outcomes for cell therapy in Parkinson's disease.
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.

  • Immunology and Microbiology
  • Neuroscience

CTL Attenuation Regulated by PS1 in Cancer-Associated Fibroblast.

In Frontiers in Immunology on 27 June 2020 by Zhang, H., Jiang, R., et al.

Objective: Cancer-associated fibroblasts (CAFs) were associated with tumor progression in the tumor microenvironment (TME). However, their immunosuppressive roles in protecting cancer cells from the attack by cytotoxic T lymphocytes (CTLs) are not fully clear. In this study, we investigated whether and how CAFs regulate tumor-infiltrating lymphocytes as well as their role in tumor immunosuppression. Methods: Eighty-three cases of ovarian cancer and 10 controls were analyzed for CAFs and CD8+ tumor-infiltrating lymphocytes by gene array and immunohistochemistry. We evaluated presenilin 1 (PS1) expression in CAFs, CTL penetration, tumor burden, dendritic cell function, and migration of tumor-infiltrating lymphocytes and their function in vivo and in vitro after silencing PS1. In addition, the pathway via which PS1 affects the TME was also evaluated. Results: PS1 was highly expressed in CAFs, and its silencing significantly promoted CD8+ CTL proliferation and penetration in multiple ovarian models (p < 0.05), resulting in tumor regression and growth inhibition. Interleukin (IL)-1β was identified as a major immune inhibitor in the TME, and it was significantly decreased after PS1 silencing (p < 0.05), which was regulated by the WNT/β-catenin pathway. It was also showed that high expression of IL-1β in CAFs inhibits CTL penetration significantly (p < 0.05). Conclusion: Highly expressed PS1 in CAFs plays a crucial role in regulating tumor-infiltrating lymphocyte populations in the TME via the WNT/β-catenin pathway. Targeting PS1 may retrieve functional CTLs in the TME and improve the efficacy of current immunotherapies.
Copyright © 2020 Zhang, Jiang, Zhou, Wang, Xu, Zhang, Gu, Fu, Shen, Zhang, Feng, Zhang, Chen and Shen.

  • Cancer Research
  • Immunology and Microbiology

In a previous report we showed that intravenous infusion of bone marrow-derived mesenchymal stem cells (MSCs) improved functional recovery after contusive spinal cord injury (SCI) in the non-immunosuppressed rat, although the MSCs themselves were not detected at the spinal cord injury (SCI) site [1]. Rather, the MSCs lodged transiently in the lungs for about two days post-infusion. Preliminary studies and a recent report [2] suggest that the effects of intravenous (IV) infusion of MSCs could be mimicked by IV infusion of exosomes isolated from conditioned media of MSC cultures (MSCexos). In this study, we assessed the possible mechanism of MSCexos action on SCI by investigating the tissue distribution and cellular targeting of DiR fluorescent labeled MSCexos at 3 hours and 24 hours after IV infusion in rats with SCI. The IV delivered MSCexos were detected in contused regions of the spinal cord, but not in the noninjured region of the spinal cord, and were also detected in the spleen, which was notably reduced in weight in the SCI rat, compared to control animals. DiR "hotspots" were specifically associated with CD206-expressing M2 macrophages in the spinal cord and this was confirmed by co-localization with anti-CD63 antibodies labeling a tetraspanin characteristically expressed on exosomes. Our findings that MSCexos specifically target M2-type macrophages at the site of SCI, support the idea that extracellular vesicles, released by MSCs, may mediate at least some of the therapeutic effects of IV MSC administration.

  • IHC
  • Rattus norvegicus (Rat)
  • Neuroscience
  • Stem Cells and Developmental Biology

Intravesical BCG Induces CD4+ T-Cell Expansion in an Immune Competent Model of Bladder Cancer.

In Cancer Immunology Research on 1 July 2017 by Kates, M., Nirschl, T., et al.

Intravesical bacillus Calmette-Guérin (BCG) immunotherapy is the standard of care in treating non-muscle-invasive bladder cancer, yet its mechanism of action remains elusive. Both innate and adaptive immune responses have been implicated in BCG activity. Although prior research has indirectly demonstrated the importance of T cells and shown a rise in CD4+ T cells in bladder tissue after BCG, T-cell subpopulations have not been fully characterized. We investigated the relationship between effector and regulatory T cells in an immune competent, clinically relevant rodent model of bladder cancer. Our data demonstrate that cancer progression in the N-methyl-N-nitrosourea (MNU) rat model of bladder cancer was characterized by a decline in the CD8/FoxP3 ratio, consistent with decreased adaptive immunity. In contrast, treatment with intravesical BCG led to a large, transient rise in the CD4+ T-cell population in the urothelium and was both more effective and immunogenic compared with intravesical chemotherapy. Whole-transcriptome expression profiling of posttreatment intravesical CD4+ and CD8+ T cells revealed minimal differences in gene expression after BCG treatment. Together, our results suggest that although BCG induces T-cell recruitment to the bladder, the T-cell phenotype does not markedly change, implying that combining T-cell-activating agents with BCG might improve clinical activity. Cancer Immunol Res; 5(7); 594-603. ©2017 AACR.
©2017 American Association for Cancer Research.

  • IHC
  • Rattus norvegicus (Rat)
  • Cancer Research
  • Immunology and Microbiology

Databases for technical aspects of immunohistochemistry.

In Journal of Toxicologic Pathology on 1 January 2017 by Furukawa, S., Nagaike, M., et al.

With the aims of sharing information about the technical aspects of immunohistochemistry (IHC) and making it possible to make a suitable choice of antibody for histopathological examination, this technical report describes the results of a questionnaire administered during the period of 2014 to 2015 to members of the Conference on Experimental Animal Histopathology. It also describes the immunological properties of primary antibodies (clone, supplier, catalog number, species reactivity, etc.) and the IHC staining conditions (fixing solution, fixing time, embedding, antigen retrieval method, antibody dilution, incubation time, incubation temperature, positive control tissue, secondary antibody information, etc.) for a total number of 733 primary antibodies (425 kinds of primary antibody).

  • IHC
  • Rattus norvegicus (Rat)
  • Pathology
View this product on CiteAb