Product Citations: 3

SUMO-Specific Protease 1 Is Critical for Myeloid-Derived Suppressor Cell Development and Function.

In Cancer Research on 1 August 2019 by Huang, X., Zuo, Y., et al.

Myeloid-derived suppressor cells (MDSC) can suppress immunity and promote tumorigenesis, and their abundance is associated with poor prognosis. In this study, we show that SUMO1/sentrin-specific peptidase 1 (SENP1) regulates the development and function of MDSC. SENP1 deficiency in myeloid cells promoted MDSC expansion in bone marrow, spleen, and other organs. Senp1-/- MDSC showed stronger immunosuppressive activity than Senp1+/+ MDSC; we observed no defects in the differentiation of myeloid precursor cell in Senp1-/- mice. Mechanistically, SENP1-mediated regulation of MDSC was dependent on STAT3 signaling. We identified CD45 as a specific STAT3 phosphatase in MDSC. CD45 was SUMOylated in MDSC and SENP1 could deconjugate SUMOylated CD45. In Senp1-/- MDSC, CD45 was highly SUMOylated, which reduced its phosphatase activity toward STAT3, leading to STAT3-mediated MDSC development and function. These results reveal a suppressive function of SENP1 in modulating MDSC expansion and function via CD45-STAT3 signaling axis. SIGNIFICANCE: These findings show that increased SUMOylation of CD45 via loss of SENP1 suppresses CD45-mediated dephosphorylation of STAT3, which promotes MDSC development and function, leading to tumorigenesis.
©2019 American Association for Cancer Research.

  • Cancer Research

Immunohistochemical detection of sphingosine-1-phosphate receptor 1 and 5 in human multiple sclerosis lesions.

In Neuropathology and Applied Neurobiology on 1 August 2014 by Brana, C., Frossard, M. J., et al.

Sphingosine-1-phosphate receptor (S1PR) modulating therapies are currently in the clinic or undergoing investigation for multiple sclerosis (MS) treatment. However, the expression of S1PRs is still unclear in the central nervous system under normal conditions and during neuroinflammation.
Using immunohistochemistry we examined tissues from both grey and white matter MS lesions for sphingosine-1-phosphate receptor 1 (S1P1 ) and 5 (S1P5 ) expression. Tissues from Alzheimer's disease (AD) cases were also examined.
S1P1 expression was restricted to astrocytes and endothelial cells in control tissues and a decrease in endothelial cell expression was found in white matter MS lesions. In grey matter MS lesions, astrocyte expression was lost in active lesions, while in quiescent lesions it was restored to normal expression levels. CNPase colocalization studies demonstrated S1P5 expression on myelin and both were reduced in demyelinated lesions. In AD tissues we found no difference in S1P1 expression.
These data demonstrate a differential modulation of S1PRs in MS lesions, which may have an impact on S1PR-directed therapies.
© 2013 British Neuropathological Society.

Integrin subunit CD18 Is the T-lymphocyte receptor for the Helicobacter pylori vacuolating cytotoxin.

In Cell Host & Microbe on 17 January 2008 by Sewald, X., Gebert-Vogl, B., et al.

Helicobacter pylori infection is associated with gastritis, ulcerations, and gastric adenocarcinoma. H. pylori secretes the vacuolating cytotoxin (VacA), a major pathogenicity factor. VacA has immunosuppressive effects, inhibiting interleukin-2 (IL-2) secretion by interference with the T cell receptor/IL-2 signaling pathway at the level of calcineurin, the Ca2+-calmodulin-dependent phosphatase. Here, we show that VacA efficiently enters activated, migrating primary human T lymphocytes by binding to the beta2 (CD18) integrin receptor subunit and exploiting the recycling of lymphocyte function-associated antigen (LFA)-1. LFA-1-deficient Jurkat T cells were resistant to vacuolation and IL-2 modulation, and genetic complementation restored sensitivity to VacA. VacA targeted human, but not murine, CD18 for cell entry, consistent with the species-specific adaptation of H. pylori. Furthermore, expression of human integrin receptors (LFA-1 or Mac-1) in murine T cells resulted in VacA-mediated cellular vacuolation. Thus, H. pylori co-opts CD18 as a VacA receptor on human T lymphocytes to subvert the host immune response.

  • Immunology and Microbiology
View this product on CiteAb