Product Citations: 6

Heterozygous premature termination in zinc-finger domain of Krüppel-like factor 2 gene associates with dysregulated immunity.

In Frontiers in Immunology on 6 December 2022 by Pernaa, N., Keskitalo, S., et al.

Krüppel-like factor 2 (KLF2) is a transcription factor with significant roles in development, maturation, differentiation, and proliferation of several cell types. In immune cells, KLF2 regulates maturation and trafficking of lymphocytes and monocytes. KLF2 participates in regulation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Although pulmonary arterial hypertension (PAH) related to KLF2 genetic variant has been suggested, genetic role of KLF2 associated with immune dysregulation has not been described. We identified a family whose members suffered from lymphopenia, autoimmunity, and malignancy. Whole exome sequencing revealed a KLF2 p.(Glu318Argfs*87) mutation disrupting the highly conserved zinc finger domain. We show a reduced amount of KLF2 protein, defective nuclear localization and altered protein-protein interactome. The phenotypically variable positive cases presented with B and T cell lymphopenia and abnormalities in B and T cell maturation including low naive T cell counts and low CD27+IgD-IgM- switched memory B cells. KLF2 target gene (CD62L) expression was affected. Although the percentage of (CD25+FOXP3+, CD25+CD127-) regulatory T cells (Treg) was high, the naive Treg cells (CD45RA+) were absent. Serum IgG1 levels were low and findings in one case were consistent with common variable immunodeficiency (CVID). Transcription of NF-κβ pathway genes and p65/RelA phosphorylation were not significantly affected. Inflammasome activity, transcription of genes related with JAK/STAT pathway and interferon signature were also comparable to controls. Evidence of PAH was not found. In conclusion, KLF2 variant may be associated with familial immune dysregulation. Although the KLF2 deficient family members in our study suffered from lymphopenia, autoimmunity or malignancy, additional study cohorts are required to confirm our observations.
Copyright © 2022 Pernaa, Keskitalo, Chowdhury, Nissinen, Glumoff, Keski-Filppula, Junttila, Eklund, Santaniemi, Siitonen, Seppänen, Vähäsalo, Varjosalo, Åström and Hautala.

  • Homo sapiens (Human)
  • Immunology and Microbiology

Coronavirus disease 2019 (COVID-19) is caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1-3 and individuals with COVID-19 have symptoms that can be asymptomatic, mild, moderate or severe4,5. In the early phase of infection, T- and B-cell counts are substantially decreased6,7; however, IgM8-11 and IgG12-14 are detectable within 14 d after symptom onset. In COVID-19-convalescent individuals, spike-specific neutralizing antibodies are variable3,15,16. No specific drug or vaccine is available for COVID-19 at the time of writing; however, patients benefit from treatment with serum from COVID-19-convalescent individuals17,18. Nevertheless, antibody responses and cross-reactivity with other coronaviruses in COVID-19-convalescent individuals are largely unknown. Here, we show that the majority of COVID-19-convalescent individuals maintained SARS-CoV-2 spike S1- and S2-specific antibodies with neutralizing activity against the SARS-CoV-2 pseudotyped virus, and that some of the antibodies cross-neutralized SARS-CoV, Middle East respiratory syndrome coronavirus or both pseudotyped viruses. Convalescent individuals who experienced severe COVID-19 showed higher neutralizing antibody titres, a faster increase in lymphocyte counts and a higher frequency of CXCR3+ T follicular help (TFH) cells compared with COVID-19-convalescent individuals who experienced non-severe disease. Circulating TFH cells were spike specific and functional, and the frequencies of CXCR3+ TFH cells were positively associated with neutralizing antibody titres in COVID-19-convalescent individuals. No individuals had detectable autoantibodies. These findings provide insights into neutralizing antibody responses in COVID-19-convalescent individuals and facilitate the treatment and vaccine development for SARS-CoV-2 infection.

  • FC/FACS
  • Homo sapiens (Human)
  • COVID-19

Role of CXCR3 signaling in response to anti-PD-1 therapy.

In EBioMedicine on 1 October 2019 by Han, X., Wang, Y., et al.

Tumor mutations and tumor microenvironment are associated with resistance to cancer immunotherapies. However, peripheral T cell in effective anti-programmed death 1 (PD-1) antibody treatment is poorly understood.
Mass spectrometry and conventional flow cytometry were used to investigate peripheral blood cells isolated from patients. Furthermore, melanoma mouse model was performed to assess the role of CXCR3 signaling in anti-PD-1 antibody treatment.
We revealed a marked increase in the percentage of CXCR3+ T cells in the blood of cancer patients after the first pembrolizumab infusion. This percentage decreased after the second infusion in responsive patients, whereas a sustained high percentage of CXCR3+ T cells was observed in patients with progressive disease. A low percentage of CXCR3+ T cells presented in patients with stable disease or a partial response was confirmed by conventional flow cytometry. Intriguingly, blockade of CXCR3 signaling exacerbated tumor growth in mice. Intratumoral injection with recombinant CXCL9/10 plus intraperitoneal injection of anti-PD1 antibody inhibited the tumor growth in mice.
The dynamic changes in CXCR3+ T cells in blood may be a prognostic factor in anti-PD-1 immunotherapy, and promotion of CXCR3-mediated signaling may be beneficial to the anti-PD-1 therapy. FUND: This work was supported by the National Natural Science Foundation of China (Nos. 81722047, 81871944, 81670553, 81874317, 81572389, 81730100) and Jiangsu province key medical talents (Nos. ZDRCA2016026), The "Deng Feng" Distinguished Scholars Program, National Science & Technology Major Project "Key New Drug Creation and Manufacturing Program", China (Number: 2018ZX09201002), and the Fundamental Research Funds for the Central Universities (020814380117).
Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.

  • FC/FACS
  • Homo sapiens (Human)

B-cell composition in the blood and cerebrospinal fluid of multiple sclerosis patients treated with dimethyl fumarate.

In Multiple Sclerosis and Related Disorders on 1 November 2018 by Høglund, R. A., Polak, J., et al.

B cells may contribute to the immunopathogenesis of multiple sclerosis (MS). Dimethyl fumarate (DMF) has recently been shown to reduce the frequency of memory B cells in blood, but it is not known whether the drug influences the cellular composition in the cerebrospinal fluid (CSF).
A cross-sectional study examining the cellular composition in blood and cerebrospinal fluid (CSF) from 10 patients treated with DMF and 18 patients receiving other disease modifying drugs or no treatment.
Patients treated with DMF had reduced proportions of memory B cells in blood compared to other MS patients (p = 0.0007), and the reduction correlated with treatment duration (rs = -0.75, p = 0.021). In the CSF, the absolute number of mononuclear cells were significantly lower in DMF-treated patients compared to the other patients (p = 0.023), and there was a disproportionate decrease of plasmablasts (p = 0.031).
The results of this exploratory study support a B-cell mediated mechanism of action for DMF in both blood and CSF.
Copyright © 2018 Elsevier B.V. All rights reserved.

  • Homo sapiens (Human)
  • Cardiovascular biology
  • Immunology and Microbiology
  • Neuroscience

Integrin α4β7 switches its ligand specificity via distinct conformer-specific activation.

In The Journal of Cell Biology on 6 August 2018 by Wang, S., Wu, C., et al.

Chemokine (C-C motif) ligand 25 (CCL25) and C-X-C motif chemokine 10 (CXCL10) induce the ligand-specific activation of integrin α4β7 to mediate the selective adhesion of lymphocytes to mucosal vascular addressin cell adhesion molecule-1 (MAdCAM-1) or vascular cell adhesion molecule-1 (VCAM-1). However, the mechanism underlying the selective binding of different ligands by α4β7 remains obscure. In this study, we demonstrate that CCL25 and CXCL10 induce distinct active conformers of α4β7 with a high affinity for either MAdCAM-1 or VCAM-1. Single-cell force measurements show that CCL25 increases the affinity of α4β7 for MAdCAM-1 but decreases its affinity for VCAM-1, whereas CXCL10 has the opposite effect. Structurally, CCL25 induces a more extended active conformation of α4β7 compared with CXCL10-activated integrin. These two distinct intermediate open α4β7 conformers selectively bind to MAdCAM-1 or VCAM-1 by distinguishing their immunoglobulin domain 2. Notably, Mn2+ fully opens α4β7 with a high affinity for both ligands. Thus, integrin α4β7 adopts different active conformations to switch its ligand-binding specificity.
© 2018 Wang et al.

  • Homo sapiens (Human)
  • Cell Biology
View this product on CiteAb