Product Citations: 10

Leptospirosis is a globally neglected re-emerging zoonosis affecting all mammals, albeit with variable outcomes. Humans are susceptible to leptospirosis; infection with Leptospira interrogans species can cause severe disease in humans, with multi-organ failure, mainly affecting kidney, lung and liver function, leading to death in 10% of cases. Mice and rats are more resistant to acute disease and can carry leptospires asymptomatically in the kidneys and act as reservoirs, shedding leptospires into the environment. The incidence of leptospirosis is higher in tropical countries, and countries with poor sanitation, where heavy rainfall and flooding favour infection. Diagnosis of leptospirosis is difficult because of the many different serovars and the variety of clinical symptoms that can be confused with viral infections. The physiopathology is poorly understood, and leptospirosis is often regarded as an inflammatory disease, like sepsis.
To investigate the causes of death in lethal leptospirosis, we compared intraperitoneal infection of male and female C57BL6/J mice with 108Leptospira of two strains of pathogenic L. interrogans. One strain, L. interrogans Manilae L495, killed the mice 4 days after infection, whereas the other strain, L. interrogans Icterohaemorrhagiae Verdun, did not induce any major symptoms in the mice. On day 3 post infection, the mice were humanely euthanised and blood and organs were collected. Bacterial load, biochemical parameters, cytokine production and leucocyte population were assessed by qPCR, ELISA, cytometry and immunohistochemistry.
Neither lung, liver, pancreas or kidney damage nor massive necroptosis or cytokine storm could explain the lethality. Although we did not find pro-inflammatory cytokines, we did find elevated levels of the anti-inflammatory cytokine IL-10 and the chemokine RANTES in the serum and organs of Leptospira-infected mice. In contrast, severe leptospirosis was associated with neutrophilia and vascular permeability, unexpectedly due to neutrophils and not only due to Leptospira infection. Strikingly, the main cause of death was myocarditis, an overlooked complication of human leptospirosis.
Despite clinical similarities between bacterial sepsis and leptospirosis, striking differences were observed, in particular a lack of cytokine storm in acute leptospirosis. The fact that IL-10 was increased in infected mice may explain the lack of pro-inflammatory cytokines, emphasising the covert nature of Leptospira infections. Neutrophilia is a hallmark of human leptospirosis. Our findings confirm the ineffective control of infection by neutrophils and highlight their deleterious role in vascular permeability, previously only attributed to the ability of leptospires to damage and cross endothelial junctions. Finally, the identification of death due to myocarditis rather than kidney, liver or liver failure may reflect an overlooked but common symptom associated with poor prognosis in human leptospirosis. These features of neutrophilia and myocarditis are also seen in patients, making this mouse model a paradigm for better understanding human leptospirosis and designing new therapeutic strategies.
The Boneca laboratory was supported by the following programmes: Investissement d'Avenir program, Laboratoire d'Excellence "Integrative Biology of Emerging Infectious Diseases" (ANR-10-LABX-62-IBEID) and by R&D grants from Danone and MEIJI. CW received an ICRAD/ANR grant (S-CR23012-ANR 22 ICRD 0004 01). SP received a scholarship by Université Paris Cité (formerly Université Paris V - Descartes) through Doctoral School BioSPC (ED562, BioSPC). SP has additionally received a scholarship "Fin de Thèse de Science" number FDT202404018322 granted by "Fondation pour la Recherche Médicale (FRM)". The funders had no implication in the design, analysis and reporting of the study.
Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved.

  • Veterinary Research

Clinical and animal model studies have implicated inflammation and glial and peripheral immune cell responses in the pathophysiology of spinal cord injury (SCI). A key player in the inflammatory response after SCI is the pleiotropic cytokine tumor necrosis factor (TNF), which exists both in both a transmembrane (tmTNF) and a soluble (solTNF) form. In the present study, we extend our previous findings of a therapeutic effect of topically blocking solTNF signaling after SCI for three consecutive days on lesion size and functional outcome to study the effect on spatio-temporal changes in the inflammatory response after SCI in mice treated with the selective solTNF inhibitor XPro1595 and compared to saline-treated mice. We found that despite comparable TNF and TNF receptor levels between XPro1595- and saline-treated mice, XPro1595 transiently decreased pro-inflammatory interleukin (IL)-1β and IL-6 levels and increased pro-regenerative IL-10 levels in the acute phase after SCI. This was complemented by a decrease in the number of infiltrated leukocytes (macrophages and neutrophils) in the lesioned area of the spinal cord and an increase in the number of microglia in the peri-lesion area 14 days after SCI, followed by a decrease in microglial activation in the peri-lesion area 21 days after SCI. This translated into increased myelin preservation and improved functional outcomes in XPro1595-treated mice 35 days after SCI. Collectively, our data suggest that selective targeting of solTNF time-dependently modulates the neuroinflammatory response by favoring a pro-regenerative environment in the lesioned spinal cord, leading to improved functional outcomes.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research
  • Neuroscience

Fibrosis is a prominent pathological feature of skeletal muscle in Duchenne muscular dystrophy (DMD). The commonly used disease mouse model, mdx 5cv , displays progressive fibrosis in the diaphragm but not limb muscles. We use single-cell RNA sequencing to determine the cellular expression of the genes involved in extracellular matrix (ECM) production and degradation in the mdx 5cv diaphragm and quadriceps. We find that fibro/adipogenic progenitors (FAPs) are not only the primary source of ECM but also the predominant cells that express important ECM regulatory genes, including Ccn2, Ltbp4, Mmp2, Mmp14, Timp1, Timp2, and Loxs. The effector and regulatory functions are exerted by diverse FAP clusters which are different between diaphragm and quadriceps, indicating their activation by different tissue microenvironments. FAPs are more abundant in diaphragm than in quadriceps. Our findings suggest that the development of anti-fibrotic therapy for DMD should target not only the ECM production but also the pro-fibrogenic regulatory functions of FAPs.
© 2022 The Author(s).

  • Mus musculus (House mouse)

The Inflammatory Response after Moderate Contusion Spinal Cord Injury: A Time Study.

In Biology on 20 June 2022 by Lund, M. C., Ellman, D. G., et al.

Spinal cord injury (SCI) initiates detrimental cellular and molecular events that lead to acute and delayed neuroinflammation. Understanding the role of the inflammatory response in SCI requires insight into the temporal and cellular synthesis of inflammatory mediators. We subjected C57BL/6J mice to SCI and investigated inflammatory reactions. We examined activation, recruitment, and polarization of microglia and infiltrating immune cells, focusing specifically on tumor necrosis factor (TNF) and its receptors TNFR1 and TNFR2. In the acute phase, TNF expression increased in glial cells and neuron-like cells, followed by infiltrating immune cells. TNFR1 and TNFR2 levels increased in the delayed phase and were found preferentially on neurons and glial cells, respectively. The acute phase was dominated by the infiltration of granulocytes and macrophages. Microglial/macrophage expression of Arg1 increased from 1-7 days after SCI, followed by an increase in Itgam, Cx3cr1, and P2ry12, which remained elevated throughout the study. By 21 and 28 days after SCI, the lesion core was populated by galectin-3+, CD68+, and CD11b+ microglia/macrophages, surrounded by a glial scar consisting of GFAP+ astrocytes. Findings were verified in postmortem tissue from individuals with SCI. Our findings support the consensus that future neuroprotective immunotherapies should aim to selectively neutralize detrimental immune signaling while sustaining pro-regenerative processes.

  • Immunology and Microbiology
  • Neuroscience

Wnt5A supports antigen cross-presentation and CD8 T cell activation

Preprint on BioRxiv : the Preprint Server for Biology on 4 January 2022 by Sarraf, T. R. & Sen, M.

Antigen processing, cross-presentation, and antigen-specific CD8 T cell response form part and parcel of T cell-mediated immunity. Yet, lacunae remain in our understanding of antigen processing/presentation and CD8 T cell response. Given the association of Wnt5A signaling with immune homeostasis, we evaluated the utility of Wnt5A in antigen processing, cross-presentation, and CD8 T cell activation. Using mouse bone marrow-derived dendritic cells as antigen-presenting cells and ovalbumin as a model antigen we found that Wnt5A mediated regulation of actin and proteasome dynamics is inherently associated with antigen processing. A Wnt5A-Actin-Protasome axis also contributes to antigen cross-presentation and antigen responsive CD8 T cell expansion. In concurrence with these observations, we demonstrated impaired activation of ovalbumin-specific CD8 T cells in ovalbumin immunized Wnt5A heterozygous mice as illustrated by their poor CD8 T cell recall response to ovalbumin when compared to similarly immunized wild type cohorts. Our results suggest that Wnt5A signaling-directed antigen processing/presentation could be vital for generating CD8 T cell recall response to antigen, thus shedding light on a critical parameter of immunity.

  • Immunology and Microbiology
View this product on CiteAb