Product Citations: 8

Platelet mitochondria possess remarkable plasticity for oxidation of energy substrates, where metabolic dependency on glucose or fatty acids is higher than glutamine. Since platelets metabolize nearly the entire pool of glucose to lactate rather than fluxing through mitochondrial tricarboxylic acid cycle, we posit that majority of mitochondrial ATP, which is essential for platelet granule secretion and thrombus formation, is sourced from oxidation of fatty acids. We performed a comprehensive analysis of bioenergetics and function of stimulated platelets in the presence of etomoxir, trimetazidine and oxfenicine, three pharmacologically distinct inhibitors of β-oxidation. Each of them significantly impaired oxidative phosphorylation in unstimulated as well as thrombin-stimulated platelets leading to a small but consistent drop in ATP level in activated cells due to a lack of compensation from glycolytic ATP. Trimetazidine and oxfenicine attenuated platelet aggregation, P-selectin externalization and integrin αIIb β3 activation. Both etomoxir and trimetazidine impeded agonist-induced dense granule release and platelet thrombus formation on collagen under arterial shear. The effect of inhibitors on platelet aggregation and dense granule release was dose- and incubation time- dependent with significant inhibition at higher doses and prolonged incubation times. Neither of the inhibitors could protect mice from collagen-epinephrine-induced pulmonary embolism or prolong mouse tail bleeding times. However, mice pre-administered with etomoxir, trimetazidine and oxfenicine were protected from ferric chloride-induced mesenteric thrombosis. In conclusion, β-oxidation of fatty acids sustains ATP level in stimulated platelets and is therefore essential for energy-intensive agonist-induced platelet responses. Thus, fatty acid oxidation may constitute an attractive therapeutic target for novel antiplatelet agents.
© 2023 Federation of American Societies for Experimental Biology.

Effects of wasp venom on venous thrombosis in rats.

In Iranian Journal of Basic Medical Sciences on 1 July 2022 by Jin, F. M., Wang, M., et al.

This study aimed to investigate the potential effects of wasp venom (WV) from Vespa magnifica on antithrombosis in rats with inferior vena cava (IVC) thrombosis.
The thrombosis rat model was established by improving the IVC stenosis, in which rats were subjected to IVC ligation for 75 min. Rats were administered argatroban (IP) or WV (s.c.) for 4 hr after IVC thrombosis. The weight, inhibition rate, and pathological morphology of the thrombosis induced by IVC ligation and the variation in four coagulation parameters, coagulation factors, and CD61+CD62P+ were simultaneously determined in IVC rats.
The thrombus formed as a result of IVC ligation was stable. Compared with the control group, the weight of the thrombus was significantly reduced in the argatroban group. Thrombus weight was reduced by treatment with 0.6, 0.2, and 0.05 mg/kg WV, with inhibition rates of 52.19%, 35.32%, and 28.98%, respectively. Inflammatory cells adhered to and infiltrated the vessel wall in the IVC group more than in the sham group. However, the pathological morphology and CD61+CD62P+ of the WV treatment groups tended to be normal.
We improved the model of IVC thrombosis to be suitable for evaluation of antithrombotic drugs. Our findings demonstrated that WV could inhibit IVC thrombosis associated with reducing coagulation factors V and CD61+CD62p expression in rats.

  • Cardiovascular biology

Chronic edible dosing of Δ9-tetrahydrocannabinol (THC) in nonhuman primates reduces systemic platelet activity and function.

In American Journal of Physiology - Cell Physiology on 1 March 2022 by Reitsma, S. E., Lakshmanan, H. H. S., et al.

Cannabis usage has steadily increased as acceptance is growing for both medical and recreational reasons. Medical cannabis is administered for treatment of chronic pain based on the premise that the endocannabinoid system signals desensitize pain sensor neurons and produce anti-inflammatory effects. The major psychoactive ingredient of cannabis is Δ9-tetrahydrocannabinol (THC) that signals mainly through cannabinoid receptor-1 (CBr), which is also present on nonneuron cells including blood platelets of the circulatory system. In vitro, CBr-mediated signaling has been shown to acutely inhibit platelet activation downstream of the platelet collagen receptor glycoprotein (GP)VI. The systemic effects of chronic THC administration on platelet activity and function remain unclear. This study investigates the effects of chronic THC administration on platelet function using a nonhuman primate (NHP) model. Our results show that female and male NHPs consuming a daily THC edible had reduced platelet adhesion, aggregation, and granule secretion in response to select platelet agonists. Furthermore, a change in bioactive lipids (oxylipins) was observed in the female cohort after THC administration. These results indicate that chronic THC edible administration desensitized platelet activity and function in response to GPVI- and G-protein coupled receptor-based activation by interfering with primary and secondary feedback signaling pathways. These observations may have important clinical implications for patients who use medical marijuana and for providers caring for these patients.

  • Endocrinology and Physiology

C-reactive protein (CRP) exerts prothrombotic effects through dissociating from pentameric CRP (pCRP) into modified or monomeric CRP (mCRP). However, although the high prevalence of venous thromboembolism (VTE) in patients with anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) has been identified, it remains unclear whether the high levels of circulating pCRP potentially contribute to this hypercoagulable state in AAV. ANCA can induce the generation of neutrophil extracellular traps (NETs). In this study, the NETs-dependent generation of mCRP from pCRP and the influences of mCRP on the activation of coagulation system and inflammatory response in AAV were investigated.
NETs were induced after TNF-α primed neutrophils were incubated with ANCA-containing IgG. After ANCA-induced netting neutrophils were incubated statically with platelet-rich plasma (PRP) containing mCRP (60 μg/mL), the proportion of platelets expressing CD62p increased significantly, while no increased CD62p expression of platelets was observed after static incubation with PRP containing pCRP (60 μg/mL). Under flow conditions, perfusing immobilized ANCA-induced netting neutrophils with pCRP-containing PRP caused platelets activation and mCRP deposition. The newly generated mCRP induced platelets activation on ANCA-induced netting neutrophils, enhanced D-dimer formation, and enhanced high mobility group box 1 secretion by platelets.
Under flow conditions, ANCA-induced netting neutrophils can activate platelets and then prompt the formation of mCRP on activated platelets. Then the newly generated mCRP can further enhance the activation of platelets, the process of thrombogenesis, and the inflammatory response. So the high level of circulating pCRP is not only a sensitive marker for judging the disease activity, but also a participant in the pathophysiology of AAV.

  • ICC-IF
  • Cell Biology
  • Immunology and Microbiology

Dissection of autophagy in human platelets.

In Autophagy on 1 April 2014 by Feng, W., Chang, C., et al.

Continuous turnover of intracellular components by autophagy is necessary to preserve cellular homeostasis in all tissues. Despite recent advances in identifying autophagy-related genes and understanding the functions of autophagy in developmental and pathological conditions, so far, the role of autophagy in platelet, a specific anucleate cell type, is poorly understood. In this study, we showed that human platelets express the autophagy-related proteins ATG5, ATG7, and LC3. The same as in nucleated mammalian cells, autophagy was stimulated by cell starvation or the MTOR inhibitor rapamycin in a phosphatidylinositol 3-kinase (PtdIns3K)-dependent manner. Disruption of autophagic flux led to impairment of platelet aggregation and adhesion. Furthermore, Becn1 heterozygous knockout mice displayed a prolonged bleeding time and reduced platelet aggregation. These results suggest a potential role of autophagy in the regulation of platelet function, and imply that gene transcription may not be an essential prerequisite for adaptive autophagy.

  • WB
  • Cell Biology
View this product on CiteAb