Product Citations: 8

Smad3 is essential for polarization of tumor-associated neutrophils in non-small cell lung carcinoma.

In Nature Communications on 31 March 2023 by Chung, J. Y., Tang, P. C., et al.

Neutrophils are dynamic with their phenotype and function shaped by the microenvironment, such as the N1 antitumor and N2 pro-tumor states within the tumor microenvironment (TME), but its regulation remains undefined. Here we examine TGF-β1/Smad3 signaling in tumor-associated neutrophils (TANs) in non-small cell lung carcinoma (NSCLC) patients. Smad3 activation in N2 TANs is negatively correlate with the N1 population and patient survival. In experimental lung carcinoma, TANs switch from a predominant N2 state in wild-type mice to an N1 state in Smad3-KO mice which associate with enhanced neutrophil infiltration and tumor regression. Neutrophil depletion abrogates the N1 anticancer phenotype in Smad3-KO mice, while adoptive transfer of Smad3-KO neutrophils reproduces this protective effect in wild-type mice. Single-cell analysis uncovers a TAN subset showing a mature N1 phenotype in Smad3-KO TME, whereas wild-type TANs mainly retain an immature N2 state due to Smad3. Mechanistically, TME-induced Smad3 target genes related to cell fate determination to preserve the N2 state of TAN. Importantly, genetic deletion and pharmaceutical inhibition of Smad3 enhance the anticancer capacity of neutrophils against NSCLC via promoting their N1 maturation. Thus, our work suggests that Smad3 signaling in neutrophils may represent a therapeutic target for cancer immunotherapy.
© 2023. The Author(s).

  • Cancer Research

Heat Shock Protein 27 Affects Myeloid Cell Activation and Interaction with Prostate Cancer Cells.

In Biomedicines on 5 September 2022 by Singer, D., Ressel, V., et al.

Heat shock proteins are cytoprotective molecules induced by environmental stresses. The small heat shock protein 27 (Hsp27) is highly expressed under oxidative stress conditions, mediating anti-oxidative effects and blocking apoptosis. Since medical gas plasma treatment subjects cancer cells to a multitude of reactive oxygen species (ROS), inducing apoptosis and immunomodulation, probable effects of Hsp27 should be investigated. To this end, we quantified the extracellular Hsp27 in two prostate cancer cell lines (LNCaP, PC-3) after gas plasma-induced oxidative stress, showing a significantly enhanced release. To investigate immunomodulatory effects, two myeloid cell lines (THP-1 and HL-60) were also exposed to Hsp27. Only negligible effects on viability, intracellular oxidative milieu, and secretion profiles of the myeloid cells were found when cultured alone. Interestingly, prostate cancer-myeloid cell co-cultures showed altered secretion profiles with a significant decrease in vascular endothelial growth factor (VEGF) release. Furthermore, the myeloid surface marker profiles were changed, indicating an enhanced differentiation in co-culture upon Hsp27 treatment. Finally, we investigated morphological changes, proliferation, and interaction with prostate cancer cells, and found significant alterations in the myeloid cells, supporting the tendency to differentiate. Collectively, our results suggest an ambiguous effect of Hsp27 on myeloid cells in the presence of prostate cancer cells which needs to be further investigated.

  • Cancer Research

Low-Density Neutrophils in Healthy Individuals Display a Mature Primed Phenotype.

In Frontiers in Immunology on 20 July 2021 by Blanco-Camarillo, C., Alemán, O. R., et al.

Neutrophils are the most abundant leukocytes in human peripheral blood, comprising about 70% of all leukocytes. They are regarded as the first line of defense of the innate immune system, but neutrophils have also the ability of regulating the adaptive immune response. Recently, However, multiple phenotypes and functional states of neutrophils have been reported, particularly in inflammation, autoimmunity, and cancer. One possible subtype of neutrophils, the so-called low-density neutrophils (LDN) is found among mononuclear cells (MNC), monocytes and lymphocytes, after separating the leukocytes from blood by density gradient centrifugation. LDN increase in numbers during several pathological conditions. However, LDN present in healthy conditions have not been investigated further. Therefore, in order to confirm the presence of LDN in blood of healthy individuals and to explore some of their cellular functions, neutrophils and MNC were isolated by density gradient centrifugation. Purified neutrophils were further characterized by multicolor flow cytometry (FACS) and then, using the same FACS parameters cells in the MNC fraction were analyzed. Within the MNC, LDN were consistently found. These LDN had a normal mature neutrophil morphology and displayed a CD10+, CD11b+, CD14low, CD15high, CD16bhigh, CD62L+, CD66b+, and CXCR4+ phenotype. These LDN had an enhanced reactive oxygen species (ROS) production and increased phagocytic capacity and were able to produce neutrophil extracellular traps (NET) similarly to neutrophils. These data confirm the presence of a small number of LDN is blood of healthy individuals and suggest that these LDN represent mature cells with a primed phenotype.
Copyright © 2021 Blanco-Camarillo, Alemán and Rosales.

  • Immunology and Microbiology

Entamoeba histolytica Induce Signaling via Raf/MEK/ERK for Neutrophil Extracellular Trap (NET) Formation.

In Frontiers in Cellular and Infection Microbiology on 20 July 2018 by Fonseca, Z., Díaz-Godínez, C., et al.

Amoebiasis, the disease caused by Entamoeba histolytica is the third leading cause of human deaths among parasite infections. E. histolytica was reported associated with around 100 million cases of amoebic dysentery, colitis and amoebic liver abscess that lead to almost 50,000 fatalities worldwide in 2010. E. histolytica infection is associated with the induction of inflammation characterized by a large number of infiltrating neutrophils. These neutrophils have been implicated in defense against this parasite, by mechanisms not completely described. The neutrophil antimicrobial mechanisms include phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs). Recently, our group reported that NETs are also produced in response to E. histolytica trophozoites. But, the mechanism for NETs induction remains unknown. In this report we explored the possibility that E. histolytica leads to NETs formation via a signaling pathway similar to the pathways activated by PMA or the Fc receptor FcγRIIIb. Neutrophils were stimulated by E. histolytica trophozoites and the effect of various pharmacological inhibitors on amoeba-induced NETs formation was assessed. Selective inhibitors of Raf, MEK, and NF-κB prevented E. histolytica-induced NET formation. In contrast, inhibitors of PKC, TAK1, and NADPH-oxidase did not block E. histolytica-induced NETs formation. E. histolytica induced phosphorylation of ERK in a Raf and MEK dependent manner. These data show that E. histolytica activates a signaling pathway to induce NETs formation, that involves Raf/MEK/ERK, but it is independent of PKC, TAK1, and reactive oxygen species (ROS). Thus, amoebas activate neutrophils via a different pathway from the pathways activated by PMA or the IgG receptor FcγRIIIb.

  • Immunology and Microbiology

A CEACAM6-High Airway Neutrophil Phenotype and CEACAM6-High Epithelial Cells Are Features of Severe Asthma.

In The Journal of Immunology on 15 April 2017 by Shikotra, A., Choy, D. F., et al.

Severe asthma represents a major unmet clinical need; understanding the pathophysiology is essential for the development of new therapies. Using microarray analysis, we previously found three immunological clusters in asthma: Th2-high, Th17-high, and Th2/17-low. Although new therapies are emerging for Th2-high disease, identifying molecular pathways in Th2-low disease remains an important goal. Further interrogation of our previously described microarray dataset revealed upregulation of gene expression for carcinoembryonic Ag cell adhesion molecule (CEACAM) family members in the bronchi of patients with severe asthma. Our aim was therefore to explore the distribution and cellular localization of CEACAM6 using immunohistochemistry on bronchial biopsy tissue obtained from patients with mild-to-severe asthma and healthy control subjects. Human bronchial epithelial cells were used to investigate cytokine and corticosteroid in vitro regulation of CEACAM6 gene expression. CEACAM6 protein expression in bronchial biopsies was increased in airway epithelial cells and lamina propria inflammatory cells in severe asthma compared with healthy control subjects. CEACAM6 in the lamina propria was localized to neutrophils predominantly. Neutrophil density in the bronchial mucosa was similar across health and the spectrum of asthma severity, but the percentage of neutrophils expressing CEACAM6 was significantly increased in severe asthma, suggesting the presence of an altered neutrophil phenotype. CEACAM6 gene expression in cultured epithelial cells was upregulated by wounding and neutrophil elastase. In summary, CEACAM6 expression is increased in severe asthma and primarily associated with airway epithelial cells and tissue neutrophils. CEACAM6 may contribute to the pathology of treatment-resistant asthma via neutrophil and airway epithelial cell-dependent pathways.
Copyright © 2017 by The American Association of Immunologists, Inc.

  • Immunology and Microbiology
View this product on CiteAb