Product Citations: 21

Liquid-based encapsulation for implantable bioelectronics across broad pH environments.

In Nature Communications on 25 January 2025 by Sun, H., Xue, X., et al.

Wearable and implantable bioelectronics that can interface for extended periods with highly mobile organs and tissues across a broad pH range would be useful for various applications in basic biomedical research and clinical medicine. The encapsulation of these systems, however, presents a major challenge, as such devices require superior barrier performance against water and ion penetration in challenging pH environments while also maintaining flexibility and stretchability to match the physical properties of the surrounding tissue. Current encapsulation materials are often limited to near-neutral pH conditions, restricting their application range. In this work, we report a liquid-based encapsulation approach for bioelectronics under extreme pH environments. This approach achieves high optical transparency, stretchability, and mechanical durability. When applied to implantable wireless optoelectronic devices, our encapsulation method demonstrates outstanding water resistance in vitro, ranging from extremely acidic environments (pH = 1.5 and 4.5) to alkaline conditions (pH = 9). We also demonstrate the in vivo biocompatibility of our encapsulation approach and show that encapsulated wireless optoelectronics maintain robust operation throughout 3 months of implantation in freely moving mice. These results indicate that our encapsulation strategy has the potential to protect implantable bioelectronic devices in a wide range of research and clinical applications.
© 2025. The Author(s).

HIFα isoform specific activities drive cell-type specificity ofVHL-associated oncogenesis

Preprint on BioRxiv : the Preprint Server for Biology on 3 December 2024 by Lima, J. D., Hooker, M., et al.

Cancers arising from dysregulation of generally operative signaling pathways are often tissue specific, but the mechanisms underlying this paradox are poorly understood. Based on striking cell-type specificity, we postulated that these mechanisms must operate early in cancer development and set out to study them in a model of von Hippel Lindau (VHL) disease. Biallelic mutation of the VHL ubiquitin ligase leads to constitutive activation of hypoxia inducible factors HIF1A and HIF2A and is generally a truncal event in clear cell renal carcinoma. We used an oncogenic tagging strategy in which VHL -mutant cells are marked by tdTomato, enabling their observation, retrieval, and analysis early after VHL -inactivation. Our findings reveal markedly different consequences of HIF1A and HIF2A activation, but that both contribute to renal cell-type specific consequences of VHL -inactivation in the kidney. Early involvement of HIF2A in promoting proliferation within proximal tubular epithelium supports therapeutic targeting of HIF2A early in VHL disease.

One of the emerging trends in modern analytical and bioanalytical chemistry involves the substitution of enzyme labels (such as horseradish peroxidase) with nanozymes (nanoparticles possessing enzyme-like catalytic activity). Since enzymes and nanozymes typically operate through different catalytic mechanisms, it is expected that optimal reaction conditions will also differ. The optimization of substrates for nanozymes usually focuses on determining the ideal pH and temperature. However, in some cases, even this step is overlooked, and commercial substrate formulations designed for enzymes are utilized. This paper demonstrates that not only the pH but also the composition of the substrate buffer, including the buffer species and additives, significantly impact the analytical signal generated by nanozymes. The presence of enhancers such as imidazole in commercial substrates diminishes the catalytic activity of nanozymes, which is demonstrated herein through the use of 3,3'-diaminobenzidine (DAB) and Prussian Blue as a model chromogenic substrate and nanozyme. Conversely, a simple modification to the substrate buffer greatly enhances the performance of nanozymes. Specifically, in this paper, it is demonstrated that buffers such as citrate, MES, HEPES, and TRIS, containing 1.5-2 M NaCl or NH4Cl, substantially increase DAB oxidation by Prussian Blue and yield a higher signal compared to commercial DAB formulations. The central message of this paper is that the optimization of substrate composition should be an integral step in the development of nanozyme-based assays. Herein, a step-by-step optimization of the DAB substrate composition for Prussian Blue nanozymes is presented. The optimized substrate outperforms commercial formulations in terms of efficiency. The effectiveness of the optimized DAB substrate is affirmed through its application in several commonly used immunostaining techniques, including tissue staining, Western blotting assays of immunoglobulins, and dot blot assays of antibodies against SARS-CoV-2.

Innate mechanism of mucosal barrier erosion in the pathogenesis of acquired colitis.

In IScience on 20 October 2023 by Yang, W. H., Aziz, P. V., et al.

The colonic mucosal barrier protects against infection, inflammation, and tissue ulceration. Composed primarily of Mucin-2, proteolytic erosion of this barrier is an invariant feature of colitis; however, the molecular mechanisms are not well understood. We have applied a recurrent food poisoning model of acquired inflammatory bowel disease using Salmonella enterica Typhimurium to investigate mucosal barrier erosion. Our findings reveal an innate Toll-like receptor 4-dependent mechanism activated by previous infection that induces Neu3 neuraminidase among colonic epithelial cells concurrent with increased Cathepsin-G protease secretion by Paneth cells. These anatomically separated host responses merge with the desialylation of nascent colonic Mucin-2 by Neu3 rendering the mucosal barrier susceptible to increased proteolytic breakdown by Cathepsin-G. Depletion of Cathepsin-G or Neu3 function using pharmacological inhibitors or genetic-null alleles protected against Mucin-2 proteolysis and barrier erosion and reduced the frequency and severity of colitis, revealing approaches to preserve and potentially restore the mucosal barrier.
© 2023 The Authors.

The mammary gland is a hormone sensitive organ that is susceptible to endocrine-disrupting chemicals (EDCs) during the vulnerable periods of parous reorganization (ie, pregnancy, lactation, and involution). Pregnancy is believed to have long-term protective effects against breast cancer development; however, it is unknown if EDCs can alter this effect. We examined the long-term effects of propylparaben, a common preservative used in personal care products and foods, with estrogenic properties, on the parous mouse mammary gland. Pregnant BALB/c mice were treated with 0, 20, 100, or 10 000 µg/kg/day propylparaben throughout pregnancy and lactation. Unexposed nulliparous females were also evaluated. Five weeks post-involution, mammary glands were collected and assessed for changes in histomorphology, hormone receptor expression, immune cell number, and gene expression. For several parameters of mammary gland morphology, propylparaben reduced the effects of parity. Propylparaben also increased proliferation, but not stem cell number, and induced modest alterations to expression of ERα-mediated genes. Finally, propylparaben altered the effect of parity on the number of several immune cell types in the mammary gland. These results suggest that propylparaben, at levels relevant to human exposure, can interfere with the effects of parity on the mouse mammary gland and induce long-term alterations to mammary gland structure. Future studies should address if propylparaben exposures negate the protective effects of pregnancy on mammary cancer development.
© The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  • Endocrinology and Physiology
View this product on CiteAb