Product Citations: 13

Isolation and cultivation as well as in situ identification of MSCs from equine dental pulp and periodontal ligament.

In Frontiers in Veterinary Science on 28 March 2023 by Heilen, L. B., Roßgardt, J., et al.

The lifelong eruption places a great demand on the dental pulp and periodontal ligament (PDL) of horse teeth. Cells within the pulp and PDL seem to play a key role during this remodeling.
In this study, we isolated and cultivated MSCs (medicinal signaling cells) from dental pulp, PDL and retrobulbar fat of four horses. Subsequently, we analyzed them by flow cytometry and immunohistochemistry to determine and compare their characteristics. In addition, we localized these cells within the tissue structure via immunohistochemistry of histological sections. For these analyses, several surface markers were applied.
The described method illustrates a feasible approach to isolate and cultivate MSCs from equine dental pulp and PDL. In the flow cytometry a vast majority of cultivated cells were positive for CD90 and CD40 and negative for CD11a/18, CD45, CD105 and MHCII suggesting that these cells feature characteristics of MSCs. Immunohistochemistry of histological pulp and PDL sections showed the localization of CD90 positive cells especially in the perivascular region and the subodontoblastic layer.
Our findings indicate that the isolation and cultivation of MSCs from equine dental pulp and PDL is feasible although an elaborate and complicated harvesting protocol is required. MSCs isolated from dental pulp and PDL are regarded as candidates for new therapeutical approaches in equine dental medicine like regeneration of periodontal lesions, enhancement of periodontal re-attachment after dental replantation and stimulation of pulp-obliteration and apexification in combination with endodontic therapies.
Copyright © 2023 Heilen, Roßgardt, Dern-Wieloch, Vogelsberg and Staszyk.

  • Veterinary Research

T cell deficiency precipitates antibody evasion and emergence of neurovirulent polyomavirus.

In eLife on 7 November 2022 by Lauver, M. D., Jin, G., et al.

JC polyomavirus (JCPyV) causes progressive multifocal leukoencephalopathy (PML), a life-threatening brain disease in immunocompromised patients. Inherited and acquired T cell deficiencies are associated with PML. The incidence of PML is increasing with the introduction of new immunomodulatory agents, several of which target T cells or B cells. PML patients often carry mutations in the JCPyV VP1 capsid protein, which confer resistance to neutralizing VP1 antibodies (Ab). Polyomaviruses (PyV) are tightly species-specific; the absence of tractable animal models has handicapped understanding PyV pathogenesis. Using mouse polyomavirus (MuPyV), we found that T cell deficiency during persistent infection, in the setting of monospecific VP1 Ab, was required for outgrowth of VP1 Ab-escape viral variants. CD4 T cells were primarily responsible for limiting polyomavirus infection in the kidney, a major reservoir of persistent infection by both JCPyV and MuPyV, and checking emergence of these mutant viruses. T cells also provided a second line of defense by controlling the outgrowth of VP1 mutant viruses that evaded Ab neutralization. A virus with two capsid mutations, one conferring Ab-escape yet impaired infectivity and a second compensatory mutation, yielded a highly neurovirulent variant. These findings link T cell deficiency and evolution of Ab-escape polyomavirus VP1 variants with neuropathogenicity.
© 2022, Lauver et al.

  • FC/FACS
  • Immunology and Microbiology

DAT and TH expression marks human Parkinson's disease in peripheral immune cells.

In NPJ Parkinson's Disease on 7 June 2022 by Gopinath, A., Mackie, P., et al.

Parkinson's disease (PD) is marked by a loss of dopamine neurons, decreased dopamine transporter (DAT) and tyrosine hydroxylase (TH) expression. However, this validation approach cannot be used for diagnostic, drug effectiveness or investigational purposes in human patients because midbrain tissue is accessible postmortem. PD pathology affects both the central nervous and peripheral immune systems. Therefore, we immunophenotyped blood samples of PD patients for the presence of myeloid derived suppressor cells (MDSCs) and discovered that DAT+/TH+ monocytic MDSCs, but not granulocytic MDSCs are increased, suggesting a targeted immune response to PD. Because in peripheral immune cells DAT activity underlies an immune suppressive mechanism, we investigated whether expression levels of DAT and TH in the peripheral immune cells marks PD. We found drug naïve PD patients exhibit differential DAT+/TH+ expression in peripheral blood mononuclear cells (PBMCs) compared to aged/sex matched healthy subjects. While total PBMCs are not different between the groups, the percentage of DAT+/TH+ PBMCs was significantly higher in drug naïve PD patients compared to healthy controls irrespective of age, gender, disease duration, disease severity or treatment type. Importantly, treatment for PD negatively modulates DAT+/TH+ expressing PBMCs. Neither total nor the percentage of DAT+/TH+ PBMCs were altered in the Alzheimer's disease cohort. The mechanistic underpinning of this discovery in human PD was revealed when these findings were recapitulated in animal models of PD. The reverse translational experimental strategy revealed that alterations in dopaminergic markers in peripheral immune cells are due to the disease associated changes in the CNS. Our study demonstrates that the dopaminergic machinery on peripheral immune cells displays an association with human PD, with exciting implications in facilitating diagnosis and investigation of human PD pathophysiology.
© 2022. The Author(s).

  • FC/FACS
  • Immunology and Microbiology
  • Neuroscience

We explore the status of quiescence, stemness and adipogenic differentiation capacity in adipose stem/progenitor cells (ASCs) ex vivo, immediately after isolation from human subcutaneous white adipose tissue, by sorting the stromal vascular fraction into cell-surface DLK1+/CD34-, DLK1+/CD34dim and DLK1-/CD34+ cells. We demonstrate that DLK1-/CD34+ cells, the only population exhibiting proliferative and adipogenic capacity, express ex vivo the bonafide quiescence markers p21Cip1, p27Kip1 and p57Kip2 but neither proliferation markers nor the senescence marker p16Ink4a. The pluripotency markers NANOG, SOX2 and OCT4 are barely detectable in ex vivo ASCs while the somatic stemness factors, c-MYC and KLF4 and the early adipogenic factor C/EBPβ are highly expressed. Further sorting of ASCs into DLK1-/CD34+/CD24- and DLK1-/CD34+/CD24+ fractions shows that KLF4 and c-MYC are higher expressed in DLK1-/CD34+/CD24+ cells correlating with higher colony formation capacity and considerably lower adipogenic activity. Proliferation capacity is similar in both populations. Next, we show that ASCs routinely isolated by plastic-adherence are DLK1-/CD34+/CD24+. Intriguingly, CD24 knock-down in these cells reduces proliferation and adipogenesis. In conclusion, DLK1-/CD34+ ASCs in human sWAT exist in a quiescent state, express high levels of somatic stemness factors and the early adipogenic transcription factor C/EBPβ but senescence and pluripotency markers are barely detectable. Moreover, our data indicate that CD24 is necessary for adequate ASC proliferation and adipogenesis and that stemness is higher and adipogenic capacity lower in DLK1-/CD34+/CD24+ relative to DLK1-/CD34+/CD24- subpopulations.

  • FC/FACS
  • Cell Biology

Antibody escape by polyomavirus capsid mutation facilitates neurovirulence.

In eLife on 17 September 2020 by Lauver, M. D., Goetschius, D. J., et al.

JCPyV polyomavirus, a member of the human virome, causes progressive multifocal leukoencephalopathy (PML), an oft-fatal demyelinating brain disease in individuals receiving immunomodulatory therapies. Mutations in the major viral capsid protein, VP1, are common in JCPyV from PML patients (JCPyV-PML) but whether they confer neurovirulence or escape from virus-neutralizing antibody (nAb) in vivo is unknown. A mouse polyomavirus (MuPyV) with a sequence-equivalent JCPyV-PML VP1 mutation replicated poorly in the kidney, a major reservoir for JCPyV persistence, but retained the CNS infectivity, cell tropism, and neuropathology of the parental virus. This mutation rendered MuPyV resistant to a monoclonal Ab (mAb), whose specificity overlapped the endogenous anti-VP1 response. Using cryo-EM and a custom sub-particle refinement approach, we resolved an MuPyV:Fab complex map to 3.2 Å resolution. The structure revealed the mechanism of mAb evasion. Our findings demonstrate convergence between nAb evasion and CNS neurovirulence in vivo by a frequent JCPyV-PML VP1 mutation.
© 2020, Lauver et al.

  • FC/FACS
View this product on CiteAb