Product Citations: 32

A comprehensive understanding of the evolution of the immune landscape in humans across the entire lifespan at single-cell transcriptional and protein levels, during development, maturation and senescence is currently lacking. We recruited a total of 220 healthy volunteers from the Shanghai Pudong Cohort (NCT05206643), spanning 13 age groups from 0 to over 90 years, and profiled their peripheral immune cells through single-cell RNA-sequencing coupled with single T cell and B cell receptor sequencing, high-throughput mass cytometry, bulk RNA-sequencing and flow cytometry validation experiments. We revealed that T cells were the most strongly affected by age and experienced the most intensive rewiring in cell-cell interactions during specific age. Different T cell subsets displayed different aging patterns in both transcriptomes and immune repertoires; examples included GNLY+CD8+ effector memory T cells, which exhibited the highest clonal expansion among all T cell subsets and displayed distinct functional signatures in children and the elderly; and CD8+ MAIT cells, which reached their peaks of relative abundance, clonal diversity and antibacterial capability in adolescents and then gradually tapered off. Interestingly, we identified and experimentally verified a previously unrecognized 'cytotoxic' B cell subset that was enriched in children. Finally, an immune age prediction model was developed based on lifecycle-wide single-cell data that can evaluate the immune status of healthy individuals and identify those with disturbed immune functions. Our work provides both valuable insights and resources for further understanding the aging of the immune system across the whole human lifespan.
© 2025. The Author(s).

  • Genetics
  • Immunology and Microbiology

Transcription elongation factor ELOF1 is required for efficient somatic hypermutation and class switch recombination

Preprint on BioRxiv : the Preprint Server for Biology on 26 September 2024 by Wu, L., Yadavalli, A. D., et al.

Summary Somatic hypermutation (SHM) and class switch recombination (CSR) diversify immunoglobulin (Ig) genes and are initiated by the activation induced deaminase (AID), a single-stranded DNA cytidine deaminase that is thought to engage its substrate in the context of RNA polymerase II (RNAPII) transcription. Through a loss of function genetic screen, we identified numerous potential factors involved in SHM including ELOF1, a component of the RNAPII elongation complex that has been shown to function in DNA repair and transcription elongation. Loss of ELOF1 strongly compromises SHM, CSR, and AID targeting and alters RNAPII transcription by reducing RNAPII pausing downstream of transcription start sites and levels of serine 5 but not serine 2 phosphorylated RNAPII throughout transcribed genes. ELOF1 must bind to RNAPII to be a proximity partner for AID and to function in SHM and CSR. We propose that ELOF1 helps create the appropriate stalled RNAPII substrate on which AID acts. Highlights A CRISPR knockout screen has identified numerous potential SHM factors. SHM, CSR, and AID targeting are strongly compromised in the absence of ELOF1. ELOF1 must interact with RNAPII to be an AID proximity partner and support AID targeting. ELOF1 supports RNAPII pausing and generation of the substrate for AID action.

  • Biochemistry and Molecular biology

Clinical Analysis of Pediatric Acute Megakaryocytic Leukemia With CBFA2T3-GLIS2 Fusion Gene.

In Journal of Pediatric Hematology/oncology on 1 March 2024 by Du, Y., Yang, L., et al.

CBFA2T3-GLIS2 is the most frequent chimeric oncogene identified to date in non-Down syndrome acute megakaryocytic leukemia (AMKL), which is associated with extremely poor clinical outcome. The presence of this fusion gene is associated with resistance to high-intensity chemotherapy, including hematopoietic stem cell transplantation (HSCT), and a high cumulative incidence of relapse frequency. The clinical features and clinical effects of China Children's Leukemia Group-acute myeloid leukemia (AML) 2015/2019 regimens and haploidentical HSCT (haplo-HSCT) for treatment of 6 children harboring the CBFA2T3-GLIS2 fusion gene between January 2019 and December 2021 were retrospectively analyzed. The 6 patients included 4 boys and 2 girls with a median disease-onset age of 19.5 months (range: 6-67 mo) who were diagnosed with AMKL. Flow cytometry demonstrated CD41a, CD42b, and CD56 expression and lack of HLA-DR expression in all 6 patients. All the children were negative for common leukemia fusion genes by reverse transcription polymerase chain reaction, but positive for the CBFA2T3-GLIS2 fusion gene by next-generation sequencing and RNA sequencing. All patients received chemotherapy according to China Children's Leukemia Group-AML 2015/2019 regimens, and 4 achieved complete remission. Four children underwent haplo-HSCT with posttransplant cyclophosphamide-based conditioning; 3 had minimal residual disease negative (minimal residual disease <0.1%) confirmed by flow cytometry at the end of the follow-up, with the remaining patient experiencing relapse at 12 months after transplantation. Transcriptome RNA sequencing is required for the detection of the CBFA2T3-GLIS2 fusion gene and for proper risk-based allocation of pediatric patients with AML in future clinical strategies. Haplo-HSCT with posttransplant cyclophosphamide-based conditioning may improve survival in children with AMKL harboring the fusion gene.
Copyright © 2024 The Author(s). Published by Wolters Kluwer Health, Inc.

  • Homo sapiens (Human)
  • Cancer Research

Phenotypic characterization of Peripheral B cells in Mycobacterium tuberculosis infection and disease in Addis Ababa, Ethiopia.

In Tuberculosis (Edinburgh, Scotland) on 1 May 2023 by Girma, T., Tsegaye, A., et al.

Mortality and morbidity from tuberculosis (TB) remain one of the most important public health issues. Although cell-mediated immunity is the main immune response against Mycobacterium tuberculosis (MTB), the role of B-cells during MTB infection and disease is unclear.
Peripheral blood mononuclear cells (PBMC) were isolated from treatment naïve Pulmonary TB patients (TB, n = 16), latent TB-infected participants (LTBI, n = 17), and healthy controls (HC, n = 19). PBMCs were stained with various fluorescently labeled antibodies to define B-cell subsets using multicolor flow cytometry.
Atypical memory B cells (CD19+CD27-CD21-) and circulating marginal zone B-cells (CD19+CD27+CD21+IgM+IgD+CD23-) were significantly higher in active TB when compared to LTBI and HC. CD5+ regulatory B cells (Breg, CD19+CD24hiCD38hiCD5+) and resting B-cells (CD19+CD27+CD21+) in Active TB patients were significantly lower compared to HC and LTBI. Overall, there were no differences in B cell percentages (CD19+), naïve B cells (CD19+CD27-CD21+), Breg (CD19+CD24hiCD38hi), and activated memory B cells (CD19+CD27+CD21-) among the three study groups.
These results indicated that multiple subsets of B cells were associated with TB infection and disease. It will be useful to examine these cell populations for their potential use as biomarkers for TB disease and LTBI.
Published by Elsevier Ltd.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology

Bioengineered omental transplant site promotes pancreatic islet allografts survival in non-human primates.

In Cell Reports Medicine on 21 March 2023 by Deng, H., Zhang, A., et al.

The transplanting islets to the liver approach suffers from an immediate posttransplant loss of islets of more than 50%, progressive graft dysfunction over time, and precludes recovery of grafts should there be serious complications such as the development of teratomas with grafts that are stem cell-derived islets (SC-islets). The omentum features an attractive extrahepatic alternative site for clinical islet transplantation. We explore an approach in which allogeneic islets are transplanted onto the omentum, which is bioengineered with a plasma-thrombin biodegradable matrix in three diabetic non-human primates (NHPs). Within 1 week posttransplant, each transplanted NHP achieves normoglycemia and insulin independence and remains stable until termination of the experiment. Success was achieved in each case with islets recovered from a single NHP donor. Histology demonstrates robust revascularization and reinnervation of the graft. This preclinical study can inform the development of strategies for β cell replacement including the use of SC-islets or other types of novel cells in clinical settings.
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.

View this product on CiteAb