Product Citations: 44

Metabolic reprogramming fuels cancer cell metastasis and remodels the immunosuppressive tumor microenvironment (TME). We report here that circPETH, a circular RNA (circRNA) transported via extracellular vesicles (EVs) from tumor-associated macrophages (TAMs) to hepatocellular carcinoma (HCC) cells, facilitates glycolysis and metastasis in recipient HCC cells. Mechanistically, circPETH-147aa, encoded by circPETH in an m6A-driven manner, promotes PKM2-catalyzed ALDOA-S36 phosphorylation via the MEG pocket. Furthermore, circPETH-147aa impairs anti-HCC immunity by increasing HuR-dependent SLC43A2 mRNA stability and driving methionine and leucine deficiency in cytotoxic CD8+ T cells. Importantly, through virtual and experimental screening, we find that a small molecule, Norathyriol, is an effective inhibitor that targets the MEG pocket on the circPETH-147aa surface. Norathyriol reverses circPETH-147aa-facilitated acquisition of metabolic and metastatic phenotypes by HCC cells, increases anti-PD1 efficacy, and enhances cytotoxic CD8+ T-cell function. Here we show that Norathyriol is a promising anti-HCC agent that contributes to attenuating the resistance of advanced HCC to immune checkpoint blocker (ICB) therapies.
© 2025. The Author(s).

  • FC/FACS
  • Homo sapiens (Human)
  • Biochemistry and Molecular biology
  • Cancer Research
  • Cell Biology

Transcriptome sequencing-based study on the mechanism of action of Jintiange capsules in regulating synovial mesenchymal stem cells exosomal miRNA and articular chondrocytes mRNA for the treatment of osteoarthritis.

In Journal of Traditional Chinese Medicine = Chung I Tsa Chih Ying Wen Pan / Sponsored By All-China Association of Traditional Chinese Medicine, Academy of Traditional Chinese Medicine on 1 December 2024 by Zhongying, C., Xue, Z., et al.

To corroborate the efficacy of Jintiange capsules (JTGs) in the treatment of osteoarthritis (OA) by exploring the potential mechanism of action of synovial mesenchymal stem cell exosomes (SMSC-Exos) and articular chondrocytes (ACs) through transcriptome sequencing (RNA-seq).
Type II collagenase was used to induce OA in rats. The efficacy of JTGs was confirmed by macroscopic observation of articular cartilage, micro-CT observation, and safranin fast green staining. After SMSC-Exos and ACs were qualified, RNA-seq was used to screen differentially expressed miRNAs and mRNAs. The target genes of differentially expressed miRNAs in Synovial mesenchymal stem cells (SMSCs) were predicted based on the multiMiR R package. The co-differentially expressed genes of SMSC-Exos and ACs were obtained by venny 2.1.0. The miRNA-mRNA regulatory network was constructed by Cytoscape software. Based on the OmicShare platform, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis was performed on the mRNA regulated by key miRNAs. Expression trend analysis was performed for co-differentially expressed genes. Correlation analysis was performed on micro-CT efficacy indicators, co-differentially expressed genes mRNA and miRNA.
The efficacy of each administration group of JTGs was significant compared with the model group. SMSC-Exos and ACs were identified by their characteristics. The expression of rno-miR-23a-3p, rno-miR-342-3p, rno-miR-146b-5p, rno-miR-501-3p, rno-miR-214-3p was down-regulated in OA pathological state, and the expression of rno-miR-222-3p, rno-miR-30e-3p, rno-miR-676, and rno-miR-192-5p expression was up-regulated, and the expression of all these miRNAs was reversed after the intervention with JTGs containing serum. The co-differentially expressed genes were enriched in the interleukin 17 signaling pathway, tumor necrosis factor signaling pathway, transforming growth factor-β signaling pathway, etc. The expression trends of Ccl7, Akap12, Grem2, Egln3, Arhgdib, Ccl20, Mmp12, Pla2g2a, and Nr4a1 were significant. There was a correlation between micro-CT pharmacodynamic index, mRNA, and miRNA.
JTGs can improve the degeneration of joint cartilage and achieve the purpose of cartilage protection, which can be used for the treatment of OA. SMSCs-related miRNA expression profiles were significantly altered after the intervention with JTGs containing serum. The 9 co-differentially expressed genes may be the key targets for the efficacy of JTGs in the treatment of OA rats, which can be used for subsequent validation.

  • Genetics
  • Stem Cells and Developmental Biology

Optimizing of a suitable protocol for isolating tissue-derived extracellular vesicles and profiling small RNA patterns in hepatocellular carcinoma.

In Liver International : Official Journal of the International Association for the Study of the Liver on 1 October 2024 by Yang, W., Liu, Y., et al.

Extracellular vesicles (EVs) facilitate cell-cell interactions in the tumour microenvironment. However, standard and efficient methods to isolate tumour tissue-derived EVs are lacking, and their biological functions remain elusive.
To determine the optimal method for isolating tissue-derived EVs, we compared the characterization and concentration of EVs obtained by three previously reported methods using transmission electron microscopy, nanoparticle tracking analysis, and nanoflow analysis (Nanoflow). Additionally, the differential content of small RNAs, especially tsRNAs, between hepatocellular carcinoma (HCC) and adjacent normal liver tissues (ANLTs)-derived EVs was identified using Arraystar small RNA microarray. The targets of miRNAs and tsRNAs were predicted, and downstream functional analysis was conducted using Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, non-negative matrix factorization and survival prediction analysis.
A differential centrifugation-based protocol without cell cultivation (NC protocol) yielded higher EV particles and higher levels of CD9+ and CD63+ EVs compared with other isolation protocols. Interestingly, the NC protocol was also effective for isolating frozen tissue-derived EVs that were indistinguishable from fresh tissue. HCC tissues showed significantly higher EV numbers compared with ANLTs. Furthermore, we identified different types of small RNAs in HCC tissue-derived EVs, forming a unique multidimensional intercellular communication landscape that can differentiate between HCC and ANLTs. ROC analysis further showed that the combination of the top 10 upregulated small RNAs achieved better diagnostic performance (AUC = .950 [.895-1.000]). Importantly, most tsRNAs in HCC tissue-derived EVs were downregulated and mitochondria-derived, mainly involving in lipid-related metabolic reprogramming.
The NC protocol was optimal for isolating EVs from HCC, especially from frozen tissues. Our study emphasized the different roles of small-RNA in regulating the HCC ecosystem, providing insights into HCC progression and potential therapeutic targets.
© 2024 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  • Homo sapiens (Human)
  • Cancer Research
  • Genetics

A Plasma Exosomal Metabolic Profiling of Nonalcoholic Fatty Liver Disease Patients Complicated with Impaired Fasting Glucose.

In The Turkish Journal of Gastroenterology : the Official Journal of Turkish Society of Gastroenterology on 1 February 2024 by Jiang, W., Jin, Q., et al.

Nonalcoholic fatty liver disease is considered as the hepatic manifestation of metabolic syndrome. Detection of circulating exosomes together with metabolomic analysis of their cargo would provide early signals for metabolic derangements and complications associated with nonalcoholic fatty liver disease. Therefore, this study profiled exosomal metabolome of patients with nonalcoholic fatty liver disease and impaired fasting glucose.
Plasma exosomes were extracted from nonalcoholic fatty liver disease patients with or without impaired fasting glucose through differential ultracentrifugation. Their metabolite profiles were examined by ultrahigh-performance liquid chrom atography-quadrupole time-of-flight mass spectrometry. Pathway analysis was carried out on platform MetaboAnalyst 4.0.
Thirty-nine patients were enrolled, including nonalcoholic fatty liver disease-alone group (n = 26) and age-and gender-comparable nonalcoholic fatty liver disease plus impaired fasting glucose group (n = 13). Although less than and different from their plasma counterparts, a total of 10 significantly differential exosomal metabolites were identified. Nonalcoholic fatty liver disease plus impaired fasting glucose group had higher concentrations of linoleic acid, palmitamide, stearamide, and oleamide, as well as a lower concentration of phosphatidylethanolamine [20:5(5Z,8Z,11Z,14Z,17Z)/20:5(5Z,8Z,11Z,14Z,17Z)]. Pathway analysis showed an obviously changed metabolism of linoleic acid.
Metabolomic analysis of plasma exosomes revealed a distinct change in fatty acids and related pathways in nonalcoholic fatty liver disease patients with impaired fasting glucose. These preliminary results provide a metabolomic snapshot and basis for further investigation of exosome biology for these patients.

  • FC/FACS
  • Homo sapiens (Human)
  • Biochemistry and Molecular biology
  • Cell Biology

Exosomes are emerging as potent and safe delivery carriers for use in vaccinology and therapeutics. A better vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is needed to provide improved, broader, longer lasting neutralization of SARS-CoV-2, a more robust T cell response, enable widespread global usage, and further enhance the safety profile of vaccines given the likelihood of repeated booster vaccinations. Here, we use Capricor's StealthXTM platform to engineer exosomes to express native SARS-CoV-2 spike Delta variant (STX-S) protein on the surface for the delivery of a protein-based vaccine for immunization against SARS-CoV-2 infection. The STX-S vaccine induced a strong immunization with the production of a potent humoral immune response as demonstrated by high levels of neutralizing antibody not only against the delta SARS-CoV-2 virus but also two Omicron variants (BA.1 and BA.5), providing broader protection than current mRNA vaccines. Additionally, both CD4+ and CD8+ T cell responses were increased significantly after treatment. Quantification of spike protein by ELISA showed that only nanograms of protein were needed to induce a potent immune response. This is a significantly lower dose than traditional recombinant protein vaccines with no adjuvant required, which makes the StealthXTM exosome platform ideal for the development of multivalent vaccines with a better safety profile. Importantly, our exosome platform allows novel proteins, or variants in the case of SARS-CoV-2, to be engineered onto the surface of exosomes in a matter of weeks, comparable with mRNA vaccine technology, but without the cold storage requirements necessary for mRNA vaccines. The ability to utilize exosomes for cellular delivery of proteins, as demonstrated by STX-S, has enormous potential to revolutionize vaccinology by rapidly facilitating antigen presentation at an extremely low dose resulting in a potent, broad antibody response.
Copyright: © 2023 Cacciottolo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

  • FC/FACS
  • Homo sapiens (Human)
  • COVID-19
View this product on CiteAb