Product Citations: 9

To investigate the effect of specific knockout of SHP2 in mononuclear macrophages on renal ischemia-reperfusion injury and its molecular mechanism. The structural, functional, and pathological changes in the mouse kidney were detected by ultrasound testing. The relative fluorescence intensity of α-SMA, Col1, Col3, and Vim was measured by immunofluorescence staining, and ELISA was performed to detect the concentrations of blood urea nitrogen (BUN), creatinine (Crea), and uric acid (UA). The relative protein expressions of relevant proteins in the mouse kidney tissue were detected by western blotting. Specific knockout of SHP2 could improve both renal function and structure, reduce the relative fluorescence intensity of α-SMA, Col1, Col3 and Vim, lower the concentrations of BUN, Crea, and UA and the expressions of TNF-α, IFNγ, p-NFκB, and p-MyD88, and increase the expressions of p-MerTK, p-FAK, p-PI3K, and p-IκB. The above results illustrate that specific knockdown of macrophage SHP2 promotes macrophage M2 polarization and alleviates renal ischemia-reperfusion injury. The above results illustrate that specific knockdown of macrophage SHP2 promotes macrophage M2 polarization and attenuatesll renal ischemia-reperfusion injury. Specific knockout of macrophage SHP2 promotes macrophage M2 polarization and alleviates renal ischemia-reperfusion injury.
© 2024.

  • Immunology and Microbiology

TREM2+ and interstitial-like macrophages orchestrate airway inflammation in SARS-CoV-2 infection in rhesus macaques.

In Nature Communications on 6 April 2023 by Upadhyay, A. A., Viox, E. G., et al.

The immunopathological mechanisms driving the development of severe COVID-19 remain poorly defined. Here, we utilize a rhesus macaque model of acute SARS-CoV-2 infection to delineate perturbations in the innate immune system. SARS-CoV-2 initiates a rapid infiltration of plasmacytoid dendritic cells into the lower airway, commensurate with IFNA production, natural killer cell activation, and a significant increase of blood CD14-CD16+ monocytes. To dissect the contribution of lung myeloid subsets to airway inflammation, we generate a longitudinal scRNA-Seq dataset of airway cells, and map these subsets to corresponding populations in the human lung. SARS-CoV-2 infection elicits a rapid recruitment of two macrophage subsets: CD163+MRC1-, and TREM2+ populations that are the predominant source of inflammatory cytokines. Treatment with baricitinib (Olumiant®), a JAK1/2 inhibitor is effective in eliminating the influx of non-alveolar macrophages, with a reduction of inflammatory cytokines. This study delineates the major lung macrophage subsets driving airway inflammation during SARS-CoV-2 infection.
© 2023. The Author(s).

  • FC/FACS
  • COVID-19
  • Immunology and Microbiology

Modulation of type I interferon responses potently inhibits SARS-CoV-2 replication and inflammation in rhesus macaques

Preprint on BioRxiv : the Preprint Server for Biology on 24 October 2022 by Hoang, T. N., Viox, E. G., et al.

Type-I interferons (IFN-I) are critical mediators of innate control of viral infections, but also drive recruitment of inflammatory cells to sites of infection, a key feature of severe COVID-19. Here, and for the first time, IFN-I signaling was modulated in rhesus macaques (RMs) prior to and during acute SARS-CoV-2 infection using a mutated IFNα2 (IFN-modulator; IFNmod), which has previously been shown to reduce the binding and signaling of endogenous IFN-I. In SARS-CoV-2-infected RMs, IFNmod reduced both antiviral and inflammatory ISGs. Notably, IFNmod treatment resulted in a potent reduction in (i) SARS-CoV-2 viral load in Bronchoalveolar lavage (BAL), upper airways, lung, and hilar lymph nodes; (ii) inflammatory cytokines, chemokines, and CD163+MRC1-inflammatory macrophages in BAL; and (iii) expression of Siglec-1, which enhances SARS-CoV-2 infection and predicts disease severity, on circulating monocytes. In the lung, IFNmod also reduced pathogenesis and attenuated pathways of inflammasome activation and stress response during acute SARS-CoV-2 infection. This study, using an intervention targeting both IFN-α and IFN-β pathways, shows that excessive inflammation driven by type 1 IFN critically contributes to SARS-CoV-2 pathogenesis in RMs, and demonstrates the potential of IFNmod to limit viral replication, SARS-CoV-2 induced inflammation, and COVID-19 severity.

  • COVID-19
  • Immunology and Microbiology

Ovarian cancer is highly prevalent and has high mortality rates due to metastasis and relapse. The cross communication between cancer-associated fibroblasts (CAFs) and cancer-associated macrophages (CAMs) in the ovarian tumor microenvironment leads to cancer cell invasion and metastasis. However, the role of overproduction of IL-33/ST2 in the CAFs of ovarian cancer is still unclear. The expression of IL-33, ST2, apoptosis-related proteins and epithelial-mesenchymal transition (EMT) markers was measured by western blotting. Primary normal fibroblasts and CAFs from ovarian cancerous tissue were isolated and cultured in vitro, and the medium was used to stimulate blood-derived monocytes. Flow cytometry analysis was used to detect the frequency of M2-like macrophages in blood-derived monocytes from patients with ovarian cancer. Cell invasion were evaluated using Transwell assays. A xenograft model was used to study tumor growth in ST2-knockout and wild-type NOD-SCID mice. The results demonstrated higher expression of IL-33 and ST2 in carcinoma tissues compared with in para-carcinoma tissues, and there was a survival improvement associated with elevated IL-33. IL-33 and culture supernatants from CAFs, rather than normal ovarian fibroblasts, led to a higher expression of M2 macrophage marker genes in human blood-derived monocytes. Invasion and migration were aggravated in COC1 cells co-cultured with CAF-induced CAMs, and the EMT marker genes were upregulated. It was reported that EMT marker genes were downregulated and tumor volumes were significantly reduced in ST2-deficient mice. Overall, the IL-33/ST2 axis in ovarian cancer might integrate IL-33-expressing CAFs with M2 type-like CAMs, which aggravated invasion and metastasis by promoting EMT.
Copyright: © Feng et al.

  • FC/FACS
  • Cancer Research

Heme oxygenase-1 (HO-1) is a cytoprotective enzyme that controls inflammatory responses and redox homeostasis; however, its role during pulmonary tuberculosis (TB) remains unclear. Using freshly resected human TB lung tissue, we examined the role of HO-1 within the cellular and pathological spectrum of TB. Flow cytometry and histopathological analysis of human TB lung tissues showed that HO-1 is expressed primarily in myeloid cells and that HO-1 levels in these cells were directly proportional to cytoprotection. HO-1 mitigates TB pathophysiology by diminishing myeloid cell-mediated oxidative damage caused by reactive oxygen and/or nitrogen intermediates, which control granulocytic karyorrhexis to generate a zonal HO-1 response. Using whole-body or myeloid-specific HO-1-deficient mice, we demonstrate that HO-1 is required to control myeloid cell infiltration and inflammation to protect against TB progression. Overall, this study reveals that zonation of HO-1 in myeloid cells modulates free-radical-mediated stress, which regulates human TB immunopathology.
Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

View this product on CiteAb