Product Citations: 14

High-dimensional flow cytometry is the gold standard to study the human immune system in large cohorts. However, large sample sizes increase inter-experimental variation because of technical and experimental inaccuracies introduced by batch variability. Our high-throughput sample processing pipeline in combination with 28-color flow cytometry focuses on increased throughput (192 samples/experiment) and high reproducibility. We implemented quality control checkpoints to reduce technical and experimental variation. Finally, we integrated FlowSOM clustering to facilitate automated data analysis and demonstrate the reproducibility of our pipeline in a study with 3,357 samples. We reveal age-associated immune dynamics in 2,300 individuals, signified by decreasing T and B cell subsets with age. In addition, by combining genetic analyses, our approach revealed unique immune signatures associated with a single nucleotide polymorphism (SNP) that abrogates CD45 isoform splicing. In summary, we provide a versatile and reliable high-throughput, flow cytometry-based pipeline for immune discovery and exploration in large cohorts.
Published by Elsevier Inc.

  • FC/FACS
  • Homo sapiens (Human)
  • Cardiovascular biology
  • Genetics

Immune phenotypes that are associated with subsequent COVID-19 severity inferred from post-recovery samples.

In Nature Communications on 25 November 2022 by Liechti, T., Iftikhar, Y., et al.

Severe COVID-19 causes profound immune perturbations, but pre-infection immune signatures contributing to severe COVID-19 remain unknown. Genome-wide association studies (GWAS) identified strong associations between severe disease and several chemokine receptors and molecules from the type I interferon pathway. Here, we define immune signatures associated with severe COVID-19 using high-dimensional flow cytometry. We measure the cells of the peripheral immune system from individuals who recovered from mild, moderate, severe or critical COVID-19 and focused only on those immune signatures returning to steady-state. Individuals that suffered from severe COVID-19 show reduced frequencies of T cell, mucosal-associated invariant T cell (MAIT) and dendritic cell (DC) subsets and altered chemokine receptor expression on several subsets, such as reduced levels of CCR1 and CCR2 on monocyte subsets. Furthermore, we find reduced frequencies of type I interferon-producing plasmacytoid DCs and altered IFNAR2 expression on several myeloid cells in individuals recovered from severe COVID-19. Thus, these data identify potential immune mechanisms contributing to severe COVID-19.
© 2022. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.

  • Homo sapiens (Human)
  • COVID-19
  • Immunology and Microbiology

Human innate lymphoid cell activation by adenoviruses is modified by host defense proteins and neutralizing antibodies.

In Frontiers in Immunology on 25 October 2022 by Paris, O., Mennechet, F. J. D., et al.

Innate lymphoid cells (ILCs), the complements of diverse CD4 T helper cells, help maintain tissue homeostasis by providing a link between innate and adaptive immune responses. While pioneering studies over the last decade have advanced our understanding how ILCs influence adaptive immune responses to pathogens, far less is known about whether the adaptive immune response feeds back into an ILC response. In this study, we isolated ILCs from blood of healthy donors, fine-tuned culture conditions, and then directly challenged them with human adenoviruses (HAdVs), with HAdVs and host defense proteins (HDPs) or neutralizing antibodies (NAbs), to mimic interactions in a host with pre-existing immunity. Additionally, we developed an ex vivo approach to identify how bystander ILCs respond to the uptake of HAdVs ± neutralizing antibodies by monocyte-derived dendritic cells. We show that ILCs take up HAdVs, which induces phenotypic maturation and cytokine secretion. Moreover, NAbs and HDPs complexes modified the cytokine profile generated by ILCs, consistent with a feedback loop for host antiviral responses and potential to impact adenovirus-based vaccine efficacy.
Copyright © 2022 Paris, Mennechet and Kremer.

  • FC/FACS
  • Immunology and Microbiology

Ankylosing spondylitis (AS) is an autoimmune disease affecting parts of the skeletal structure in particular. Previously increased levels of the inflammatory cell types Th17, Th22, Tc17 and Tc22 cells have been shown to be associated with AS. Here, we analysed the levels of inflammatory T cell subsets, related cytokines and clinical characteristics of AS patients vs controls from northern Sweden. Peripheral blood mononuclear cells (PBMCs) obtained from 50 AS patients and 50 matched controls were short term stimulated with PMA/Ionomycin, stained and analysed by flow cytometry. Plasma levels of Interleukin (IL)-17, IL-22, IL-10 as well as clinically relevant markers were determined. Compared to male controls, male AS patients showed 1.5- to 2-fold increases of Th17 (P = .013), Th22 (P = .003) and Tc22 (P = .024) among CD45+ CD3+ lymphocytes. Plasma IL-22 levels correlated with the Tc17 proportion in male patients (Rs  = 0.499, P = .003) and plasma IL-10 levels were inversely correlated with Tc17 among all patients (Rs  = -0.276, P = .05). Male patients with syndesmophytes showed significantly higher Th17 proportions (P = .038). In female AS patients, Tc22 was negatively correlated with C-reactive protein (high sensitivity) (hsCRP) (Rs  = -0.573, P = .016). We confirmed increased proportions of inflammatory T cells and correlations with relevant cytokines from male AS patients. The correlation between Th17 and syndesmophytes supports a role of Th17 in the pathogenic process.
© 2022 The Authors. Scandinavian Journal of Immunology published by John Wiley & Sons Ltd on behalf of The Scandinavian Foundation for Immunology.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology

Human innate lymphoid cell activation by adenoviruses is modified by host defence proteins and neutralizing antibodies

Preprint on BioRxiv : the Preprint Server for Biology on 16 June 2022 by Paris, O., Mennechet, F. J., et al.

Innate lymphoid cells (ILCs), the complements of diverse CD4 T helper cells, help maintain tissue homeostasis by providing a link between innate and adaptive immune responses. While pioneering studies over the last decade have advanced our understanding how ILCs influence adaptive immune responses to pathogens, far less is known about whether the adaptive immune response feeds back into an ILC response. In this study, we isolated ILCs from blood of healthy donors, fine-tuned culture conditions, and then directly challenged them with human adenoviruses (HAdVs), with HAdVs and host defence proteins (HDPs) or neutralizing antibodies (NAbs), to mimic interactions in a host with pre-existing immunity. Additionally, we developed an ex vivo approach to identify how bystander ILCs respond to the uptake of HAdVs ± neutralizing antibodies by monocyte-derived dendritic cells. We show that ILCs take up HAdVs, which induces phenotypic maturation and cytokine secretion. Moreover, NAbs and HDPs complexes modified the cytokine profile generated by ILCs, consistent with a feedback loop for host antiviral responses and potential to impact adenovirus-based vaccine efficacy. h4>Author Summary/h4> Several studies have shown the importance of innate lymphoid cells (ILCs) both from an immune and physiological point of view, in particular for their role in the maintenance of tissue integrity, pathogens clearance, or in the establishment of immune tolerance. Our study focuses on the role of ILCs during direct challenge with prototype vaccines based on human adenoviruses (HAdVs) ± host defence proteins (HDPs) or neutralizing antibodies (NAbs) to mimic interactions in a host with pre-existing immunity. In parallel, through an ex vivo approach we observe how bystander ILCs respond to the uptake of HAdVs ± NAbs by monocyte-derived dendritic cells. We show that ILCs take up HAdVs, which induces pro- inflammatory and antiviral responses through phenotypic maturation and cytokine secretion. Moreover, HAdV-NAb and HAdV-HDP complexes modified the cytokine profile generated by ILCs, consistent with a feedback loop for host antiviral responses and potential to impact HAdV vaccine efficacy.

  • Homo sapiens (Human)
View this product on CiteAb