Product Citations: 46

The receptor binding properties of H5Nx influenza A viruses have evolved to promiscuously bind to avian-type mucin-like O-glycans

Preprint on BioRxiv : the Preprint Server for Biology on 24 April 2025 by Weber, J., Ponse, N. L., et al.

Highly pathogenic H5Nx influenza A viruses are causing unprecedented, season-independent outbreaks across avian and mammalian species, including dairy cattle, a novel reservoir. The sialoside-binding properties of influenza A hemagglutinin (HA) are strongly related to its ability to infect and transmit between hosts. Mucin-like O-glycans, omnipresent in respiratory tracts, have been understudied as viral receptors due to their complexity. To address this, we synthesized 25 O-linked glycans with diverse sialosides, including modifications by fucosides and sulfates. Our findings reveal that H5Nx 2.3.4.4b viruses uniquely bind core 3 sialyl-Lewisx and Sia-Gal-β3GalNAc, glycans not recognized by classical H5 or other avian viruses. By determining its crystal structure, we resolved the structural features of both structures in an H5 hemagglutinin (HA) from a 2016 2.3.4.4b virus. While these viruses do not bind human-type receptors, their promiscuous receptor specificity enhances binding to human tracheal tissues, suggesting that O-glycan recognition contributes to their zoonotic potential.

  • IHC
  • Immunology and Microbiology

Diabetic wounds have become a global healthcare burden owing to impaired angiogenesis and persistent infections. Extracellular vesicles (EVs) can improve diabetic wounds, though their targeting ability is limited. In this study, we investigated the performance of a novel hydrogel dressing comprised of gelatin methacryloyl, glycoengineered EVs, and polylysine in treating infected diabetic wounds. High-throughput single-cell RNA sequencing (scRNA-seq) and immunofluorescence staining revealed that E-selectin (SELE) levels were higher in diabetic wounds than in non-diabetic wounds. Mesenchymal stromal cells (MSCs) were transfected with a lentivirus containing fucosyltransferase VII (FUT7) and a CD63-P19-Nluc vector to enhance the expression of sialyl Lewis X (sLeX), the ligand of E-selectin, on the surface of EVs (s-EVs) derived from transfected MSCs (s-MSCs). s-EVs can target human umbilical vein endothelial cells (HUVECs) under lipopolysaccharide stimulation and promote the function of stimulated HUVECs in vitro. To promote and sustain the release of s-EVs, we fabricated a gelatin methacryloyl (Gel)/poly-L-lysine methacryloyl (PL)-5 hydrogel with good antibacterial ability, biocompatibility and mechanical properties. In a mouse experiment, s-EV@Gel/PL-5 exhibited excellent angiogenesis and anti-inflammatory abilities and further promoted the healing of infected diabetic wounds. Our findings demonstrated the potential of the s-EV@Gel/PL-5 hydrogel in the clinical treatment of diabetic infectious wounds.
© 2024 The Author(s). Journal of Extracellular Vesicles published by Wiley Periodicals LLC on behalf of International Society for Extracellular Vesicles.

Complex N-glycans are important for interspecies transmission of H7 influenza A viruses.

In Journal of Virology on 16 April 2024 by Spruit, C. M., Palme, D. I., et al.

Influenza A viruses (IAVs) can overcome species barriers by adaptation of the receptor-binding site of the hemagglutinin (HA). To initiate infection, HAs bind to glycan receptors with terminal sialic acids, which are either N-acetylneuraminic acid (NeuAc) or N-glycolylneuraminic acid (NeuGc); the latter is mainly found in horses and pigs but not in birds and humans. We investigated the influence of previously identified equine NeuGc-adapting mutations (S128T, I130V, A135E, T189A, and K193R) in avian H7 IAVs in vitro and in vivo. We observed that these mutations negatively affected viral replication in chicken cells but not in duck cells and positively affected replication in horse cells. In vivo, the mutations reduced virus virulence and mortality in chickens. Ducks excreted high viral loads longer than chickens, although they appeared clinically healthy. To elucidate why these viruses infected chickens and ducks despite the absence of NeuGc, we re-evaluated the receptor binding of H7 HAs using glycan microarray and flow cytometry studies. This re-evaluation demonstrated that mutated avian H7 HAs also bound to α2,3-linked NeuAc and sialyl-LewisX, which have an additional fucose moiety in their terminal epitope, explaining why infection of ducks and chickens was possible. Interestingly, the α2,3-linked NeuAc and sialyl-LewisX epitopes were only bound when presented on tri-antennary N-glycans, emphasizing the importance of investigating the fine receptor specificities of IAVs. In conclusion, the binding of NeuGc-adapted H7 IAV to tri-antennary N-glycans enables viral replication and shedding by chickens and ducks, potentially facilitating interspecies transmission of equine-adapted H7 IAVs.IMPORTANCEInfluenza A viruses (IAVs) cause millions of deaths and illnesses in birds and mammals each year. The viral surface protein hemagglutinin initiates infection by binding to host cell terminal sialic acids. Hemagglutinin adaptations affect the binding affinity to these sialic acids and the potential host species targeted. While avian and human IAVs tend to bind to N-acetylneuraminic acid (sialic acid), equine H7 viruses prefer binding to N-glycolylneuraminic acid (NeuGc). To better understand the function of NeuGc-specific adaptations in hemagglutinin and to elucidate interspecies transmission potential NeuGc-adapted viruses, we evaluated the effects of NeuGc-specific mutations in avian H7 viruses in chickens and ducks, important economic hosts and reservoir birds, respectively. We also examined the impact on viral replication and found a binding affinity to tri-antennary N-glycans containing different terminal epitopes. These findings are significant as they contribute to the understanding of the role of receptor binding in avian influenza infection.

  • Immunology and Microbiology

H7 influenza A viruses bind sialyl-LewisX, a potential intermediate receptor between species

Preprint on BioRxiv : the Preprint Server for Biology on 17 December 2023 by Spruit, C. M., Palme, D. I., et al.

Influenza A viruses (IAVs) can overcome species barriers by adaptation of the receptor binding site of the hemagglutinin (HA). To initiate infection, HAs bind to glycan receptors with terminal sialic acids, which are either N -acetylneuraminic acid (NeuAc) or N -glycolylneuraminic acid (NeuGc), the latter is mainly found in horses and pigs but not in birds and humans. We investigated the influence of previously identified equine NeuGc-adapting mutations (S128T, I130V, A135E, T189A, and K193R) in avian H7 IAVs in vitro and in vivo. We observed that these mutations negatively affected viral replication in chicken cells, but not in duck cells, and positively affected replication in horse cells. In vivo , the mutations reduced virus virulence and mortality in chickens. Ducks excreted high viral loads for a longer time than chickens, although they appeared clinically healthy. To elucidate why chickens and ducks were infected by these viruses despite the absence of NeuGc, we re-evaluated the receptor binding of H7 HAs using glycan microarray and flow cytometry studies. This revealed that mutated avian H7 HAs also bound to α2,3-linked NeuAc and sialyl-LewisX, which have an additional fucose moiety in their terminal epitope, explaining why infection of ducks and chickens was possible. Interestingly, the α2,3-linked NeuAc and sialyl-LewisX epitopes were only bound when presented on tri-antennary N -glycans, emphasizing the importance of investigating the fine receptor specificities of IAVs. In conclusion, the binding of NeuGc-adapted H7 IAV to sialyl-LewisX enables viral replication and shedding by chickens and ducks, potentially facilitating interspecies transmission of equine-adapted H7 IAVs. (249 words) Importance Influenza A viruses cause millions of deaths and illness in birds and mammals each year. The viral surface protein hemagglutinin initiates infection by binding to host cell terminal sialic acids. Hemagglutinin adaptations affect the binding affinity to these sialic acids and therefore the potential host species targeted. While avian and human IAVs tend to bind N -acetylneuraminic acid (a form of sialic acid), equine H7 viruses prefer binding to N -glycolylneuraminic acid (NeuGc). To better understand the function of NeuGc-specific adaptations in hemagglutinin and to elucidate interspecies transmission potential NeuGc-adapted viruses, we evaluated the effects of NeuGc-specific mutations in avian H7 viruses in chickens and ducks, important economic hosts and reservoir birds, respectively. We also examined the impact on viral replication and found a binding affinity to sialyl-LewisX, another terminal epitope. These findings are important as they contribute to the understanding of the role of sialyl-LewisX in avian influenza infection. (148 words)

  • Immunology and Microbiology

One critical step of metastasis formation is the extravasation of circulating tumor cells from the bloodstream. This process requires the dynamic interaction of cell adhesion molecules like E-selectin on endothelial cells with carbohydrate ligands on tumor cells. To characterize these glycans in a comprehensible approach, the rolling, tethering, and firm adhesion of nine human tumor cell lines on human umbilical vein endothelial cells was analyzed using laminar flow adhesion assays. The tumor cell lines were grouped into three subsets by their canonical E-selectin ligand status (sialyl-Lewis A and X +/+, -/+, -/-) and their adhesiveness was compared after enzymatic, pharmacologic, chemical treatment or antibody blockade of the tumor cells or endothelial cells, respectively. Tumor cells were also screened regarding their glycosyltransferase expression profile. We found that although E-selectin and terminal α2,3-sialic acid largely determined firm adhesion, adhesive events did not exclusively depend on the presence of sialyl-Lewis A and/or sialyl-Lewis X. Nevertheless, two of the three sialyl-Lewis A/X-/- tumor cells additionally or fully depended on vascular cell adhesion molecule-1 for firm adhesion. The significance of O-GalNAc- and N-glycans for adhesion varied remarkably among the tumor cells. The sialyl-Lewis A/X+/+ subset showed glycoprotein-independent adhesion, suggesting a role of glycolipids as well. All sialyl-Lewis A/X-/- tumor cells lacked FUT3 and FUT7 expression as opposed to sialyl-Lewis A/X+/+ or -/+ cell lines. In summary, the glycans on tumor cells mediating endothelial adhesion are not as much restricted to sialyl-Lewis A /X as previously assumed. The present study specifically suggests α2,3-linked sialic acid, O-GalNAc glycans, glycosphingolipids, and FUT3/FUT7 products as promising targets for future studies.
© The Author(s) 2023. Published by Oxford University Press.

  • Cancer Research
View this product on CiteAb