Product Citations: 6

Acute lymphoblastic leukemia-derived extracellular vesicles affect quiescence of hematopoietic stem and progenitor cells.

In Cell Death & Disease on 12 April 2022 by Georgievski, A., Michel, A., et al.

Patient-derived xenografted (PDX) models were generated through the transplantation of primary acute lymphoblastic leukemia (ALL) cells into immunodeficient NSG mice. We observed that ALL cells from mouse bone marrow (BM) produced extracellular vesicles (EVs) with specific expression of inducible heat shock protein HSP70, which is commonly activated in cancer cells. Taking advantage of this specific expression, we designed a strategy to generate fluorescent HSP70-labeled ALL EVs and monitor the impact of these EVs on endogenous murine BM cells ex vivo and in vivo. We discovered that hematopoietic stem and progenitor cells (HSPC) were mainly targeted by ALL EVs, affecting their quiescence and maintenance in the murine BM environment. Investigations revealed that ALL EVs were enriched in cholesterol and other metabolites that contribute to promote the mitochondrial function in targeted HSPC. Furthermore, using CD34+ cells isolated from cord blood, we confirmed that ALL EVs can modify quiescence of human HSPC. In conclusion, we have discovered a new oncogenic mechanism illustrating how EVs produced by proliferative ALL cells can target and compromise a healthy hematopoiesis system during leukemia development.
© 2022. The Author(s).

  • FC/FACS
  • Cancer Research
  • Cell Biology

The heterogeneous response of acute myeloid leukemia (AML) to current anti-leukemic therapies is only partially explained by mutational heterogeneity. We previously identified GPR56 as a surface marker associated with poor outcome across genetic groups, which characterizes two leukemia stem cell (LSC)-enriched compartments with different self-renewal capacities. How these compartments self-renew remained unclear. Here, we show that GPR56+ LSC compartments are promoted in a complex network involving epithelial-to-mesenchymal transition (EMT) regulators besides Rho, Wnt, and Hedgehog (Hh) signaling. Unexpectedly, Wnt pathway inhibition increased the more immature, slowly cycling GPR56+ CD34+ fraction and Hh/EMT gene expression, while Wnt activation caused opposite effects. Our data suggest that the crucial role of GPR56 lies in its ability to co-activate these opposing signals, thus ensuring the constant supply of both LSC subsets. We show that CDK7 inhibitors suppress both LSC-enriched subsets in vivo and synergize with the Bcl-2 inhibitor venetoclax. Our data establish reciprocal transition between LSC compartments as a novel concept underlying the poor outcome in GPR56high AML and propose combined CDK7 and Bcl-2 inhibition as LSC-directed therapy in this disease.
©2022 The Authors. Published under the terms of the CC BY 4.0 license.

  • FC/FACS
  • Mus musculus (House mouse)
  • Biochemistry and Molecular biology
  • Cancer Research
  • Stem Cells and Developmental Biology

Transduction of Primary AML Cells with Lentiviral Vector for In Vitro Study or In Vivo Engraftment.

In STAR Protocols on 18 December 2020 by Schimmer, A. D., Singh, R. P., et al.

We describe a method to silence genes in primary acute myeloid leukemia cells by transducing them with shRNA in lentiviral vectors. The transduction of primary non-adherent cells is particularly challenging. The protocol will aid in performing such experiments and is particularly helpful to prepare cells for in vivo engraftment studies. Use of a special medium supplemented with cytokines preserves the viability of the leukemic stem cells and their ability to engraft the marrow of immune-deficient mice. For complete details on the use and execution of this protocol, please refer to Singh et al. (2020).
© 2020 The Author(s).

This protocol describes a rapid and efficient feeder-, serum-, and xeno-free method for neutrophil generation from hiPSCs using ETV2 modified mRNA (mmRNA), which directs hematoendothelial programming of hiPSCs. Hematoendothelial progenitors were cultured with GM-CSF, FGF-2, and UM171 to expand myelomonocytic progenitors, followed by treatment with G-CSF and retinoic acid agonist Am580 to induce neutrophil maturation. This protocol is suitable for generating functional neutrophils from iPSCs to interrogate the role of genes in a neutrophil development and function. For complete details on the use and execution of this protocol, please refer to Brok-Volchanskaya et al. (2019).

  • Genetics
  • Stem Cells and Developmental Biology

Disrupting Mitochondrial Copper Distribution Inhibits Leukemic Stem Cell Self-Renewal.

In Cell Stem Cell on 4 June 2020 by Singh, R. P., Jeyaraju, D. V., et al.

Leukemic stem cells (LSCs) rely on oxidative metabolism and are differentially sensitive to targeting mitochondrial pathways, which spares normal hematopoietic cells. A subset of mitochondrial proteins is folded in the intermembrane space via the mitochondrial intermembrane assembly (MIA) pathway. We found increased mRNA expression of MIA pathway substrates in acute myeloid leukemia (AML) stem cells. Therefore, we evaluated the effects of inhibiting this pathway in AML. Genetic and chemical inhibition of ALR reduces AML growth and viability, disrupts LSC self-renewal, and induces their differentiation. ALR inhibition preferentially decreases its substrate COX17, a mitochondrial copper chaperone, and knockdown of COX17 phenocopies ALR loss. Inhibiting ALR and COX17 increases mitochondrial copper levels which in turn inhibit S-adenosylhomocysteine hydrolase (SAHH) and lower levels of S-adenosylmethionine (SAM), DNA methylation, and chromatin accessibility to lower LSC viability. These results provide insight into mechanisms through which mitochondrial copper controls epigenetic status and viability of LSCs.
Copyright © 2020 Elsevier Inc. All rights reserved.

  • FC/FACS
  • Cell Biology
  • Stem Cells and Developmental Biology
View this product on CiteAb